码迷,mamicode.com
首页 > 其他好文 > 详细

局部加权线性回归(Locally weighted linear regression)

时间:2016-08-13 07:42:23      阅读:120      评论:0      收藏:0      [点我收藏+]

标签:

首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合。

 

技术分享

 

对于上面三个图像做如下解释:

选取一个特征技术分享技术分享来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比较大

针对第一个,我们增加了额外的特征技术分享技术分享,这时我们可以看出情况就好了很多。

这个时候可能有疑问,是不是特征选取的越多越好,维度越高越好呢?所以针对这个疑问,如最右边图,我们用5揭多项式使得数据点都在同一条曲线上,为技术分享。此时它对于训练集来说做到了很好的拟合效果,但是,我们不认为它是一个好的假设,因为它不能够做到更好的预测。

 

针对上面的分析,我们认为第二个是一个很好的假设,而第一个图我们称之为欠拟合underfitting),而最右边的情况我们称之为过拟合overfitting

 

所以我们知道特征的选择对于学习算法的性能来说非常重要,所以现在我们要引入局部加权线性回归,它使得特征的选择对于算法来说没那么重要,也就是更随性了。

 

在我们原始的线性回归中,对于输入变量技术分享,我们要预测,通常要做:

技术分享

 

 

而对于局部加权线性回归来说,我们要做:

技术分享

技术分享为权值,从上面我们可以看出,如果技术分享很大,我们将很难去使得技术分享小,所以如果技术分享很小,则它所产生的影响也就很小。

 

通常我们选择技术分享的形式如下所示:

技术分享

上式中参数技术分享为新预测的样本特征数据,它是一个向量,参数技术分享控制了权值变化的速率,技术分享技术分享的图像如下

技术分享

可以看到

(1)如果技术分享,则技术分享

(2)如果技术分享,则技术分享

也即,技术分享很近的样本,权值接近于1,而对于离技术分享很远的样本,此时权值接近于0,这样就是在技术分享局部构成线性回归,它依赖的也只是技术分享周边的点

技术分享

图中红色直线使用线性回归做的结果,黑色直线使用LWR做的结果,可以看到局部加权回归的效果较好。

 

注意:

技术分享的形式跟高斯函数很像,但是它和高斯函数一点关系都没有,技术分享是波长参数,技术分享越大远距离样本权值下降更快。

技术分享

局部加权回归在每一次预测新样本时都会重新的确定参数,从而达到更好的预测效果当数据规模比较大的时候计算量很大,学习效率很低。并且局部加权回归也不是一定就是避免underfitting。

 

对于线性回归算法,一旦拟合出适合训练数据的参数θi’s,保存这些参数θi’s,对于之后的预测,不需要再使用原始训练数据集,所以是参数学习算法

对于局部加权线性回归算法,每次进行预测都需要全部的训练数据(每次进行的预测得到不同的参数θi’s),没有固定的参数θi’s,所以是非参数算法

局部加权线性回归(Locally weighted linear regression)

标签:

原文地址:http://www.cnblogs.com/czdbest/p/5767138.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!