标签:
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
Input
第1行:一个数N,表示有N堆石子。(1 <= N <= 1000) 第2 - N + 1行:N堆石子的数量。(1 <= A[i] <= 10^9)
Output
如果A获胜输出A,如果B获胜输出B。
Input示例
3 1 1 1
Output示例
A
【思路搬运 来自http://www.cnblogs.com/easonliu/p/4472541.html】
这一次我们讲的是一个古老而又经典的博弈问题:Nim游戏。
Nim游戏是经典的公平组合游戏(ICG),对于ICG游戏我们有如下定义:
1、两名选手;
2、两名选手轮流行动,每一次行动可以在有限合法操作集合中选择一个;
3、游戏的任何一种可能的局面(position),合法操作集合只取决于这个局面本身;局面的改变称为“移动”(move)。
4、若轮到某位选手时,该选手的合法操作集合为空,则这名选手判负。
对于第三条,我们有更进一步的定义Position,我们将Position分为两类:
P-position:在当前的局面下,先手必败。
N-position:在当前的局面下,先手必胜。
他们有如下性质:
1.合法操作集合为空的局面是P-position;
2.可以移动到P-position的局面是N-position;
3.所有移动都只能到N-position的局面是P-position。
在这个游戏中,我们已经知道A[] = {0,0,...,0}的局面是P局面,那么我们可以通过反向枚举来推导出所有的可能局面,总共的状态数量为A[1]*A[2]*...*A[N]。并且每一次的状态转移很多。
虽然耗时巨大,但确实是一个可行方法。
当然,我们这里会讲这个题目就说明肯定没那么复杂。没错,对于这个游戏有一个非常神奇的结论:
对于一个局面,当且仅当A[1] xor A[2] xor ... xor A[N] = 0时,该局面为P局面。
对于这个结论的证明如下:
1. 全0状态为P局面,即A[i]=0,则A[1] xor A[2] xor ... xor A[N] = 0。
2. 从任意一个A[1] xor A[2] xor ... xor A[N] = k != 0的状态可以移动到A[1] xor A[2] xor ... xor A[N] = 0的状态。由于xor计算的特殊性,我们知道一定有一个A[i]最高位与k最高位的1是相同的,那么必然有A[i] xor k < A[i]的,所以我们可以通过改变A[i]的值为A[i]‘,使得A[1] xor A[2] xor ... xor A[i]‘ xor ... xor A[N] = 0。
3. 对于任意一个局面,若A[1] xor A[2] xor ... xor A[N] = 0,则不存在任何一个移动可以使得新的局面A[1] xor A[2] xor ... xor A[N] != 0。由于xor计算的特殊性,我们可以知道,一定是存在偶数个1时该位置的1才会被消除。若只改变一个A[i],无论如何都会使得1的数量发生变化,从而导致A[1] xor A[2] xor ... xor A[N] != 0。
以上三条满足ICG游戏中N,P局面的转移性质,所以该结论的正确性也得到了证明。
//代码如下
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a,n,p;
int main()
{
cin>>n;
cin>>p;
n--;
while(n>0) {
cin>>a;
p^=a;
n--;
}
if(p==0) cout<<"B"<<endl;
else cout<<"A"<<endl;
return 0;
}
标签:
原文地址:http://www.cnblogs.com/wengsy150943/p/5767463.html