标签:
对于不完全为0的非负整数a, b. gcd(a, b)表示a, b 的最大公约数。那么存在整数x, y使得 gcd(a, b) = a * x + b * y;
不妨设a > b
① ,当b = 0 时,gcd(a, b) = a , 此时 x = 1, y = 0;
② ,当 a * b <> 0 时,
设 a * x + b * y = gcd(a, b); (1)
b * x0 + (a % b) * y0 = gcd( b, a % b); (2)
由朴素的欧几里德公式; gcd(a, b) = gcd (b, a % b);
得(1),(2) a * x + b * y = b * x0 + (a % b) * y0
= b * x0 + (a – a / b * b) * y0
= a * y0 + ( x0 – a / b * y0 ) * b
所以 x = y0, y = x0 – a / b * y0;
void extend_euild(int a, int b) { if(b == 0) { t = 1; p = 0; c = a; } else { extend_euild(b, a%b); int temp = t; t = p; p = temp - a/b*p; } }
标签:
原文地址:http://www.cnblogs.com/jasonlixuetao/p/5769757.html