标签:
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5839
给你n个三维的点,然后求这n各点可以构成多少个特殊四面体,特殊四面体满足一下两点;
1.至少有四条面相等;
2.如果只有四条边相等,那么剩下的两条边不相邻;
n的范围是300;
暴力枚举四面体的其中一条边的两点,然后让另外两点到这两点的距离相等,判断一下这四个点是否共面;
还有如果能构成四面体看一下是否是正四面体,如果是正四面体,则六条边都会能枚举一边,结果的一部分是正六面体的个数/6;否则则是不相等的那对对棱枚举两次所以要/2;
#include<iostream> #include<algorithm> #include<string.h> #include<stdio.h> #include<math.h> using namespace std; #define N 500 #define met(a, b) memset(a, b, sizeof(a)) #define mod 1000000007 typedef long long LL; struct Point { int x, y, z; }; double Dist(Point a, Point b)///求两点间的距离; { double ans = sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z)); return ans; } bool Judge(Point a, Point b, Point c, Point d)///判断四点是否共面;共面返回真; { Point s1, s2, s3; s1.x = b.x - a.x; s1.y = b.y - a.y; s1.z = b.z - a.z; s2.x = c.x - a.x; s2.y = c.y - a.y; s2.z = c.z - a.z; s3.x = d.x - a.x; s3.y = d.y - a.y; s3.z = d.z - a.z; int ans = s1.x*s2.y*s3.z + s1.y*s2.z*s3.x + s1.z*s2.x*s3.y - s1.z*s2.y*s3.x - s1.x*s2.z*s3.y - s1.y*s2.x*s3.z; return ans == 0; } /* ans = 下面行列式的值; s1.x s2.x s3.x s1.y s2.y s3.y s1.z s2.z s3.z */ int main() { int T, t = 1, n; scanf("%d", &T); while(T--) { Point a[N]; scanf("%d", &n); for(int i=1; i<=n; i++) scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].z); int ans1 = 0, ans2 = 0; for(int i=1; i<=n; i++) { for(int j=i+1; j<=n; j++) { Point t[N]; int cnt = 0; for(int k=1; k<=n; k++) { if(k==i || k==j)continue; if(Dist(a[k], a[i]) != Dist(a[k], a[j]))continue; t[cnt++] = a[k]; } if(cnt < 2)continue; for(int p=0; p<cnt; p++) { for(int q=p+1; q<cnt; q++) { if(Judge(a[i], a[j], t[p], t[q]))continue; if(Dist(a[i], t[p]) != Dist(t[q], a[i]))continue; if(Dist(a[i], a[j]) == Dist(t[p], t[q]) && Dist(a[i], a[j]) == Dist(t[p], a[i])) ans1++;///正四面体个数; else ans2++;///有四条边相等的四面体个数; } } } } printf("Case #%d: %d\n", t++, ans1/6 + ans2/2); } return 0; }
5839Special Tetrahedron---hdu5839(计算几何,求特殊四面体个数)
标签:
原文地址:http://www.cnblogs.com/zhengguiping--9876/p/5773801.html