码迷,mamicode.com
首页 > 其他好文 > 详细

P1066 2^k进制数

时间:2016-08-15 20:27:59      阅读:202      评论:0      收藏:0      [点我收藏+]

标签:

P1066 2^k进制数

    • 204通过
    • 373提交
  • 题目提供者洛谷OnlineJudge
  • 标签数论(数学相关)高精NOIp提高组2006
  • 难度提高+/省选-

提交该题 讨论 题解 记录

最新讨论

  • 暂时没有讨论

题目描述

设r是个2^k 进制数,并满足以下条件:

(1)r至少是个2位的2^k 进制数。

(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。

例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入输出格式

输入格式:

 

输入只有1行,为两个正整数,用一个空格隔开:

k W

 

输出格式:

 

输出为1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

 

输入输出样例

输入样例#1:
3 7
输出样例#1:
36

说明

NOIP 2006 提高组 第四题

题解:

    题目中的那个从另一角度分析就已经蕴含了这个题的基本思路。就以题目的例子为例,长度为7位的01字串按3位一段就这样分:0 000 000。其中除了首段,每段都小于(111)2,也即小于2k,而首段自然是小于2w%k(对于w%k为0时也成立)了。

    如果首段为0,则当这个2k进制数位数分别为2、3、...、[n/k]时,如果用b_max表示2k,对应的解的个数分别为C[b_max-1][2]、C[b_max-1][3]、...、C[b_max-1][n/k](C[i][j]表示从i个数里选j个构成一组组合)。

    如果首段不为0,设首段为x,则解就有c[b_max-x-1][n/k]个。

    这样,求解的个数就搞定了,剩下的活就是高精了。求组合数可以用这个公式:C[n][m]=C[n-1][m-1]+C[n-1][m],这样高精就只用加法了。

总结:answer=C(2^k-1,I)(2<=I<=w div k)+C(2^k-i-1,w div k)(1<=I<=2^(w mod k-1))

AC代码:

 技术分享

 

#include<bits/stdc++.h>
using namespace std;
int k,w,ans[220],f[1050][250];
void add(int a[],int b[]){
    int last=0;
    a[0]=max(a[0],b[0]);
    for(int i=1;i<=a[0];i++){
        a[i]+=b[i]+last;
        last=a[i]/10;
        a[i]%=10;
    }
    if(last>0) a[++a[0]]=last;
}
int main(){
    scanf("%d%d",&k,&w);
    if(w<=k) {printf("0\n");return 0;}
    int first,bitmax,lenth;
    bitmax=(1<<k)-1;
    if(w%k==0){
        first=bitmax;
        lenth=w/k-1;
    }
    else{
        first=(1<<(w%k))-1;
        lenth=w/k;
    }
    f[1][0]=1;
    f[1][1]=1;
    ans[0]=0;
    for(int i=1;i<=bitmax;i++){
        for(int j=i+1;j>=1;j--) add(f[j],f[j-1]);
        if(i>=bitmax-first&&i<bitmax) add(ans,f[lenth+1]);
    }
    for(int i=2;i<=lenth;i++) add(ans,f[i+1]);
    for(int i=ans[0];i;i--) printf("%d",ans[i]);
    printf("\n");
    return 0;
}

 

  

 

P1066 2^k进制数

标签:

原文地址:http://www.cnblogs.com/shenben/p/5774180.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!