上一节《Cocos2d-x 地图行走的实现1:图论与Dijkstra算法》
  http://blog.csdn.net/stevenkylelee/article/details/38408253
本节实践另一种求最短路径算法:SPFA
上一节我们实现的Dijkstra用了一个哈希表来保存搜索到的路径树。如果能用直接的访问的方式,就不要用哈希表,因为直接访问的方式会比哈希表更快。我们修改一下图顶点的数据结构。如下:
/*
	图顶点
*/
class Vertex
{
	friend class Graph ;
public:
	Vertex( const string& Name )
	{
		m_strId = Name ;
		m_pGraph = 0 ;
	}
	~Vertex( ) { };
public:
	// 附加数据
	unordered_map< string , void*> UserData ;
public : 
	const unordered_map< string , Edge* >& GetEdgesOut( ) const { return m_EdgesOut ; }
	const unordered_map< string , Edge* >& GetEdgesIn( ) const { return m_EdgesIn ; }
	const string& GetId( ) const { return m_strId ; }
	const string& GetText( ) const { return m_Text ; }
	void SetText( const string& Text ) { m_Text = Text ; }
	Graph * GetGraph( ) { return m_pGraph ; }
	
protected: 
	// 出边集合
	unordered_map< string , Edge* > m_EdgesOut ; 
	// 入边集合
	unordered_map< string , Edge* > m_EdgesIn ;
	// 节点表示的字符串
	string m_Text ; 
	// 节点的ID
	string m_strId ; 
	// 所属的图
	Graph * m_pGraph ; 
public : 
	// 寻路算法需要的数据
	struct Pathfinding
	{
		// 路径代价估计
		int Cost ; 
		// 标识符
		int Flag ;
		// 顶点的前驱顶点。
		Vertex * pParent ; 
		Pathfinding( )
		{
			Cost = 0 ; 
			Flag = 0 ; 
			pParent = 0 ; 
		}
	}
	PathfindingData ;
};
上一节我们实现的Dijkstra是按照Dijkstra算法的思想用最简单的方法直接做的。这样做是为了更简单地表达出算法的思想。Dijkstra的算法优化就是在于怎样做”选出拥有最小路径估计的顶点“。关于这个问题的优化,可以搜索下 优先级队列,二项堆,斐波那契堆。
  std有一个叫 priority_queue 的容器,就是优先级队列。是用priority_queue还是自己写一个优先级队列来优化,你们自己考虑吧。俗话说,师傅领进门,修行靠个人。(什么堆来堆去的数据结构,哥早已忘得一干二净了  )
)
用我自己理解的话来说,SPFA是这样:
SPFA需要用到一个先进先出的队列Q。
SPFA需要对图中的所有顶点做一个标示,标示其是否在队列Q中。可以用哈希表做映射,也可以为顶点增加一个字段。后者的实现效率更高。
先把所有顶点的路径估计值初始化为代价最大值。比如:0x0FFFFFFF。
所有顶点都标记为不在队列中。
起始顶点放入队列Q中。
起始顶点标记在队列中。
起始顶点的最短路径估计值置为最小值,比如0。
然后下面是一个循环
每次循环,弹出队列头部的一个顶点。
对这个顶点的所有出边进行松弛。如果松弛成功,就是出边终点上对应的那个顶点的路径代价值被改变了,且这个被松弛的顶点不在队列Q中,就把这个被松弛的顶点入队Q。注意,这里顶点入队的条件有2:1.松弛成功。2.且不在队列Q中。
当队列Q没有了元素。算法结束。
void Spfa( 图G,起始顶点VStart )
{
	foreach( 对图G中的所有顶点进行遍历,迭代对象v表示遍历到的每一个顶点对象)
	{
		设置顶点v的路径代价估计值为代价最大值,例如:0x0FFFFFFF
		设置标示顶点v不在队列中
		顶点v的前驱顶点都为空
	}
	起始顶点VStart路径代价估计值为最小值0
	起始顶点VStart入队Q
	for( 如果队列Q不为空)
	{
		队列Q弹出一个队头元素v
		记录v已经不在队列Q中了
		for( 遍历从队列Q中弹出的队头顶点v的每一个出边)
		{
			u = 边终点上的顶点 
			Relax( v , u,边上的权值)
			if( Relax松弛成功了 && 顶点u不在队列Q中)
			{
				u入队Q
				记录u在队列中了
			}
		}
	}
}
  从以上伪代码来看,SPFA和BFS很像:都用了队列,都是从队列弹出一个元素进行扩展子节点。SPFA不同于BFS的扩展:SPFA的扩展子节点是有条件的,根据松弛的结果。
Dijkstra不需要关心松弛的结果,所以之前的Dijkstra的Relax函数返回值为void。而SPFA是需要知道松弛是否成功的,它根据此结果决定松弛的顶点是否需要入队。所以,我们实现的SPFA的Relax函数需要返回bool。
以下,是我的SPFA实现代码
Spfa.h
#pragma once
#include "Graph\GraphPathfinding.h"
class Spfa :
	public GraphPathfinding
{
public:
	Spfa( );
	~Spfa( );
public : 
	virtual void Execute( const Graph& Graph , const string& VetexId ) ; 
private:
	inline bool Relax( Vertex* pStartVertex , Vertex* pEndVertex , int Weight ) ;
};
Spfa.cpp
#include "Spfa.h"
#include <queue>
using namespace std ;
Spfa::Spfa( )
{
}
Spfa::~Spfa( )
{
}
void Spfa::Execute( const Graph& Graph , const string& VetexId )
{
	// 取得图的顶点集合
	const auto& Vertexes = Graph.GetVertexes( ) ; 
	//  取得起始顶点对象
	Vertex *pVStart = Vertexes.find( VetexId )->second   ;
	// Spfa算法需要一个队列保存顶点
	queue< Vertex* > Q ; 
	// 初始化
	for ( auto& it : Vertexes )
	{
		Vertex *pV = it.second ; 
		pV->PathfindingData.Cost = 0x0FFFFFFF ;
		//IsInQueue[ pV ] = false ; 
		pV->PathfindingData.Flag = false ;
		pV->PathfindingData.pParent = 0 ; // 顶点的父路径都设置为空
	}
	pVStart->PathfindingData.Cost = 0 ;			// 起始顶点的路径代价为0
	pVStart->PathfindingData.Flag = true ;		// 起始顶点在队列中
	//m_Ret.PathTree[ pVStart ] = 0 ;				//  起始顶点的父路径为空
	Q.push( pVStart ) ;									// 起始顶点先入队
	
	// spfa算法
	for ( ; Q.size( ) ;  )
	{
		auto pStartVertex = Q.front( ) ; Q.pop( ) ;	// 队列弹出一个顶点v
		pStartVertex->PathfindingData.Flag = false ;
		// 松弛v的所有出边
		const auto& Eo = pStartVertex->GetEdgesOut( ) ;
		for ( auto& it : Eo )
		{
			auto pEdge = it.second ; 
			auto pEndVertex = pEdge->GetEndVertex( ) ;
			bool bRelaxRet = Relax( pStartVertex , pEndVertex , pEdge->GetWeight( ) ) ;
			if ( bRelaxRet )
			{
				// 如果对于出边松弛成功,且出边对应的终点顶点不在队列中的话,就插入队尾
				if ( pEndVertex->PathfindingData.Flag == false )
				{
					Q.push( pEndVertex ) ;
					pEndVertex->PathfindingData.Flag = false ;
				}
			}
		}
		// end for
	}
	// end for
}
bool Spfa::Relax( Vertex* pStartVertex , Vertex* pEndVertex , int Weight )
{
	int n = pStartVertex->PathfindingData.Cost + Weight ;
	if ( n < pEndVertex->PathfindingData.Cost )
	{
		// 更新路径代价
		pEndVertex->PathfindingData.Cost = n ;
		// 更新路径
		//m_Ret.PathTree[ pEndVertex ] = pStartVertex ; 
		pEndVertex->PathfindingData.pParent = pStartVertex ;
		return true ;
	}
	return false ; 
}
下图是构造了一个比较大的图,对于一次寻路同时用了Dijkstra和SPFA。图的左下角显示2个算法所用的时间。
对于上图来说,SPFA的执行要快于Dijkstra。当然,是和没有用任何优化的Dijkstra比较的结果。一般来说Dijkstra运行比较稳定,优化后也可以得到不错的性能。而SPFA的优势在于稀疏图,也就是边数较少的图。原因很明显,SPFA不需要像Dijkstra那样去选最小路径代价的顶点出来松弛,它只是从队列里面弹出一个即可。如果边数越少,入队的顶点也就越少。
上一节的工程代码不小心弄成了8分。这次设置为0分啦。
下载地址:http://download.csdn.net/detail/stevenkylelee/7731827
Cocos2d-x 地图行走的实现2:SPFA算法,布布扣,bubuko.com
原文地址:http://blog.csdn.net/stevenkylelee/article/details/38440663