标签:
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i]
is the number of smaller elements to the right of nums[i]
.
Example:
Given nums = [5, 2, 6, 1]
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Return the array [2, 1, 1, 0]
.
思路:O(nlogn)复杂度算法。
将数组排序然后构建二叉搜索树。一开始二叉搜索树上的节点都标记为未处理过。然后我们从所给的nums数组的最后一个数倒着向前遍历,依次将每一个数在二叉搜索树中对应的节点标记为处理过,然后返回二叉搜索树中已经被标记为处理过,且小于该值的个数。
具体实现中,我们在每一个节点中设置一个count变量,计数以该节点为根节点的子树中已经被标记为处理过的节点个数,初始为0。之后算法运行过程中不断更新该值并通过该值更快地求解。本质上来说这是一个线段树的应用。
当我们要求二叉搜索树中有多少被处理过的节点值小于所给的值时,有三种情况:
二叉搜索树的构建O(n),二叉搜索树的单次查找更新操作O(logn)。 总复杂度为O(n) + O(nlogn) = O(nlogn)
1 class treeNode { 2 public: 3 int val, count; 4 treeNode *left, *right; 5 treeNode(int v) : val(v), count(0), left(NULL), right(NULL) {} 6 }; 7 class Solution { 8 public: 9 //convert a sortedArray to a binary search tree and return a pointer to its root node 10 treeNode* buildTree(vector<int>& sortedArray, int left, int right) { 11 if (right < left) return NULL; 12 int mid = left + (right - left) / 2; 13 treeNode* cur = new treeNode(sortedArray[mid]); 14 cur->left = buildTree(sortedArray, left, mid - 1); 15 cur->right = buildTree(sortedArray, mid + 1, right); 16 return cur; 17 } 18 //count numbers in this binary search tree that were processed and are less than the target 19 int update(treeNode* node, int target) { 20 if (node == NULL) return -1; 21 if (node->val == target) { 22 node->count++; 23 return node->left ? node->left->count : 0; 24 } 25 else if (node->val < target) { 26 int lessCount = node->count - node->right->count; 27 int rightCount = update(node->right, target); 28 node->count++; 29 return lessCount + rightCount; 30 } 31 else { 32 int leftCount = update(node->left, target); 33 node->count++; 34 return leftCount; 35 } 36 } 37 vector<int> countSmaller(vector<int>& nums) { 38 vector<int> sortedArray = nums; 39 sort(sortedArray.begin(), sortedArray.end(), less<int>()); 40 treeNode* node = buildTree(sortedArray, 0, sortedArray.size() - 1); 41 vector<int> res(nums.size()); 42 for (int i = nums.size() - 1; i >= 0; i--) 43 res[i] = update(node, nums[i]); 44 return res; 45 } 46 };
Count of Smaller Numbers After Self -- LeetCode
标签:
原文地址:http://www.cnblogs.com/fenshen371/p/5778573.html