码迷,mamicode.com
首页 > 其他好文 > 详细

4 caffe 创建模型与编写配置文件 train_val.prototxt;solver.prototxt;deploy.proto.txt

时间:2016-08-17 11:49:21      阅读:1832      评论:0      收藏:0      [点我收藏+]

标签:

一,train_val.prototxt

name: "CIFAR10_quick"
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    # mirror: true
    # mean_file: "examples/cifar10/mean.binaryproto"uu
    mean_file: "myself/00b/00bmean.binaryproto" 
  }
  data_param {
    # source: "examples/cifar10/cifar10_train_lmdb"
    source: "myself/00b/00b_train_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    # mean_file: "examples/cifar10/mean.binaryproto"
    mean_file: "myself/00b/00bmean.binaryproto"
  }
  data_param {
    # source: "examples/cifar10/cifar10_test_lmdb"
    source: "myself/00b/00b_val_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    # pad: 1
    kernel_size: 4
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.0001
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "pool1"
  top: "pool1"
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    # pad: 2
    kernel_size: 4
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: AVE
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    # pad: 2
    kernel_size: 4
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3"
  top: "pool3"
  pooling_param {
    pool: AVE
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    # pad: 2
    kernel_size: 4
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "pool4"
  type: "Pooling"
  bottom: "conv4"
  top: "pool4"
  pooling_param {
    pool: AVE
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool4"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 200
    weight_filler {
      type: "gaussian"
      std: 0.1
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 3
    weight_filler {
      type: "gaussian"
      std: 0.1
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

二,solver.prototxt

# reduce the learning rate after 8 epochs (4000 iters) by a factor of 10

# The train/test net protocol buffer definition
net: "myself/00b/train_val.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 10
# Carry out testing every 500 training iterations.
test_interval: 70
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.001
momentum: 0.9
weight_decay: 0.004
# The learning rate policy
lr_policy: "fixed"
# lr_policy: "step"
gamma: 0.1
stepsize: 100
# Display every 100 iterations
display: 10
# The maximum number of iterations
max_iter: 2000
# snapshot intermediate results
# snapshot: 3000
# snapshot_format: HDF5
 snapshot_prefix: "myself/00b/00b"
# solver mode: CPU or GPU
solver_mode: CPU

三,deploy.prototxt

name: "CIFAR10_quick"
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 1 dim: 3 dim: 101 dim: 101 } }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 32
    kernel_size: 4
    stride: 1
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  convolution_param {
    num_output: 32
    kernel_size: 4
    stride: 1
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  convolution_param {
    num_output: 32
    kernel_size: 4
    stride: 1
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4"
  convolution_param {
    num_output: 32
    kernel_size: 4
    stride: 1
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "pool4"
  type: "Pooling"
  bottom: "conv4"
  top: "pool4"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool4"
  top: "ip1"
  inner_product_param {
    num_output: 200
  }
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  inner_product_param {
    num_output: 3
  }
}
layer {
  #name: "loss"

  name: "prob"
  type: "Softmax" 
  bottom: "ip2"
  top: "prob"

  #top: "loss"
}

参考一:

模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹下, 将需要的两个配置文件,复制到myfile文件夹内

# sudo cp models/bvlc_reference_caffenet/solver.prototxt examples/myfile/
# sudo cp models/bvlc_reference_caffenet/train_val.prototxt examples/myfile/ 

修改train_val.protxt,只需要修改两个阶段的data层就可以了,其它可以不用管。


技术分享
name: "CaffeNet"
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "examples/myfile/mean.binaryproto"
  }
  data_param {
    source: "examples/myfile/img_train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "examples/myfile/mean.binaryproto"
  }
  data_param {
    source: "examples/myfile/img_test_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
 

实际上就是修改两个data layer的mean_file和source这两个地方,其它都没有变化 。

修改其中的solver.prototxt

# sudo vi examples/myfile/solver.prototxt
技术分享
net: "examples/myfile/train_val.prototxt"
test_iter: 2
test_interval: 50
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100
display: 20
max_iter: 500
momentum: 0.9
weight_decay: 0.005
solver_mode: GPU
技术分享

100个测试数据,batch_size为50,因此test_iter设置为2,就能全cover了。在训练过程中,调整学习率,逐步变小。

参考二:

前面做好了lmdb和均值文件,下面以Googlenet为例修改网络并训练模型。

 

我们将caffe-master\models下的bvlc_googlenet文件夹复制到caffe-master\examples\imagenet下。(因为我们的lmdb和均值都在这里,放一起方便些)

打开train_val.txt,修改:

1.修改data层:

 

  1. layer {  
  2.   name: "data"  
  3.   type: "Data"  
  4.   top: "data"  
  5.   top: "label"  
  6.   include {  
  7.     phase: TRAIN  
  8.   }  
  9.   transform_param {  
  10.     mirror: true  
  11.     crop_size: 224  
  12.     mean_file: "examples/imagenet/mydata_mean.binaryproto" #均值文件  
  13.     #mean_value: 104 #这些注释掉  
  14.     #mean_value: 117  
  15.     #mean_value: 123  
  16.   }  
  17.   data_param {  
  18.     source: "examples/imagenet/mydata_train_lmdb" #训练集的lmdb  
  19.     batch_size: 32 #根据GPU修改  
  20.     backend: LMDB  
  21.   }  
  22. }  
 
  1. layer {  
  2.   name: "data"  
  3.   type: "Data"  
  4.   top: "data"  
  5.   top: "label"  
  6.   include {  
  7.     phase: TEST  
  8.   }  
  9.   transform_param {  
  10.     mirror: false  
  11.     crop_size: 224  
  12.     mean_file: "examples/imagenet/mydata_mean.binaryproto" #均值文件  
  13.     #mean_value: 104  
  14.     #mean_value: 117  
  15.     #mean_value: 123  
  16.   }  
  17.   data_param {  
  18.     source: "examples/imagenet/mydata_val_lmdb" #验证集lmdb  
  19.     batch_size: 50 #和solver中的test_iter相乘约等于验证集大小  
  20.     backend: LMDB  
  21.   }  
  22. }  
 

2.修改输出:

由于Googlenet有三个输出,所以改三个地方,其他网络一般只有一个输出,则改一个地方即可。

如果是微调,那么输出层的层名也要修改。(参数根据层名来初始化,由于输出改了,该层参数就不对应了,因此要改名)

[plain]
layer {
  name: "loss1/classifier"
  type: "InnerProduct"
  bottom: "loss1/fc"
  top: "loss1/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000 #改成你的数据集类别数
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
[plain]
layer {
  name: "loss2/classifier"
  type: "InnerProduct"
  bottom: "loss2/fc"
  top: "loss2/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000 #改成你的数据集类别数
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
[plain]
layer {
  name: "loss3/classifier"
  type: "InnerProduct"
  bottom: "pool5/7x7_s1"
  top: "loss3/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000 #改成你的数据集类别数
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

3.打开deploy.prototxt,修改:

[plain]
layer {
  name: "loss3/classifier"
  type: "InnerProduct"
  bottom: "pool5/7x7_s1"
  top: "loss3/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000 #改成你的数据集类别数
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

如果是微调,该层层名和train_val.prototxt修改一致。

接着,打开solver,修改:

[plain]
net: "examples/imagenet/bvlc_googlenet/train_val.prototxt" #路径不要错
test_iter: 1000 #前面已说明该值
test_interval: 4000 #迭代多少次测试一次
test_initialization: false
display: 40
average_loss: 40
base_lr: 0.01
lr_policy: "step"
stepsize: 320000 #迭代多少次改变一次学习率
gamma: 0.96
max_iter: 10000000 #迭代次数
momentum: 0.9
weight_decay: 0.0002
snapshot: 40000
snapshot_prefix: "examples/imagenet/bvlc_googlenet" #生成的caffemodel保存在imagenet下,形如bvlc_googlenet_iter_***.caffemodel
solver_mode: GPU

这时,我们回到caffe-master\examples\imagenet下,打开train_caffenet.sh,修改:

(如果是微调,在脚本里加入-weights **/**/**.caffemodel即可,即用来微调的caffemodel路径)

[plain]
#!/usr/bin/env sh

./build/tools/caffe train     -solver examples/imagenet/bvlc_googlenet/solver.prototxt -gpu 0

(如果有多个GPU,可自行选择) 然后,在caffe-master下执行改脚本即可开始训练:$caffe-master ./examples/imagenet/train_caffenet.sh

训练得到的caffemodel就可以用来做图像分类了,此时,需要(1)得到的labels.txt,(2)得到的mydata_mean.binaryproto,(3)得到的caffemodel以及已经修改过的deploy.prototxt,共四个文件,具体过程看:http://blog.csdn.net/sinat_30071459/article/details/50974695

参考三:

*_train_test.prototxt,*_deploy.prototxt,*_slover.prototxt文件编写时注意

1、*_train_test.prototxt文件

这是训练与测试网络配置文件

(1)在数据层中 参数include{

                                 phase:TRAIN/TEST

                             }

TRAIN与TEST不能有“...”否则会报错,还好提示信息里,会提示哪一行出现了问题,如下图:

技术分享

数字8就代表配置文件的第8行出现了错误

(2)卷积层和全连接层相似:卷积层(Convolution),全连接层(InnerProduct,容易翻译成内积层)相似处有两个【1】:都有两个param{lr_mult:1

                                           decay_mult:1                            

                               }

                             param{lr_mult: 2

                                        decay_mult: 0            

                              }

【2】:convolution_param{}与inner_product_param{}里面的参数相似,甚至相同

今天有事,明天再续!

续上!

(3)平均值文件*_mean.binaryproto要放在transform_param{}里,训练与测试数据集放在data_param{}里

2.*_deploy.prototxt文件

【1】*_deploy.prototxt文件的构造和*_train_test.prototxt文件的构造稍有不同首先没有test网络中的test模块,只有训练模块

【2】数据层的写法和原来也有不同,更加简洁:

input: "data" input_dim: 1 input_dim: 3 input_dim: 32 input_dim: 32

注意红色部分,那是数据层的名字,没有这个的话,第一卷积层无法找到数据,我一开始没有加这句就报错。下面的四个参数有点类似batch_size(1,3,32,32)里四个参数

【3】卷积层和全连接层中weight_filler{}与bias_filler{}两个参数不用再填写,应为这两个参数的值,由已经训练好的模型*.caffemodel文件提供

【4】输出层的变化(1)没有了test模块测试精度(2)输出层

*_train_test.prototxt文件:

layer{   name: "loss"   type: "SoftmaxWithLoss"#注意此处与下面的不同   bottom: "ip2"   bottom: "label"#注意标签项在下面没有了,因为下面的预测属于哪个标签,因此不能提供标签   top: "loss" }

*_deploy.prototxt文件:

layer {   name: "prob"   type: "Softmax"   bottom: "ip2"   top: "prob" }

***注意在两个文件中输出层的类型都发生了变化一个是SoftmaxWithLoss,另一个是Softmax。另外为了方便区分训练与应用输出,训练是输出时是loss,应用时是prob。

3、*_slover.prototxt

net: "test.prototxt" #训练网络的配置文件 test_iter: 100 #test_iter 指明在测试阶段有多上个前向过程(也就是有多少图片)被执行。 在MNIST例子里,在网络配置文件里已经设置test网络的batch size=100,这里test_iter 设置为100,那在测试阶段共有100*100=10000 图片被处理 test_interval: 500 #每500次训练迭代后,执行一次test base_lr: 0.01 #学习率初始化为0.01 momentum:0.9 #u=0.9 weight_decay:0.0005 # lr_policy: "inv" gamma: 0.0001 power: 0.75 #以上三个参数都和降低学习率有关,详细的学习策略和计算公式见下面 // The learning rate decay policy. The currently implemented learning rate  

// policies are as follows:  

//    - fixed: always return base_lr.  

//    - step: return base_lr * gamma ^ (floor(iter / step))  

//    - exp: return base_lr * gamma ^ iter

//    - inv: return base_lr * (1 + gamma * iter) ^ (- power)  

//    - multistep: similar to step but it allows non uniform steps defined by  

//      stepvalue  

//    - poly: the effective learning rate follows a polynomial decay, to be  

//      zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)  

//    - sigmoid: the effective learning rate follows a sigmod decay  

//      return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))  

// where base_lr, max_iter, gamma, step, stepvalue and power are defined  

// in the solver parameter protocol buffer, and iter is the current iteration. display:100 #每100次迭代,显示结果 snapshot: 5000 #每5000次迭代,保存一次快照 snapshot_prefix: "path_prefix" #快照保存前缀:更准确的说是快照保存路径+前缀,应为文件名后的名字是固定的 solver_mode:GPU #选择解算器是用cpu还是gpu

批处理文件编写:

F:/caffe/caffe-windows-master/bin/caffe.exe train --solver=C:/Users/Administrator/Desktop/caffe_test/cifar-10/cifar10_slover_prototxt --gpu=all pause

参考四:

 

06

 

 

将train_val.prototxt 转换成deploy.prototxt

 

                         

                                                                                                                                              

 

1.删除输入数据(如:type:data...inckude{phase: TRAIN}),然后添加一个数据维度描述。

 

  1. input: "data"   
  2. input_dim: 1   
  3. input_dim: 3   
  4. input_dim: 224   
  5. input_dim: 224  
  6. force_backward: true  
input: "data" 
input_dim: 1 
input_dim: 3 
input_dim: 224 
input_dim: 224
force_backward: true

 


 

2.移除最后的“loss” 和“accuracy” 层,加入“prob”层。

 

  1. layers {  
  2.   name: "prob"  
  3.   type: SOFTMAX  
  4.   bottom: "fc8"  
  5.   top: "prob"  
  6. }  
技术分享
layers {
  name: "prob"
  type: SOFTMAX
  bottom: "fc8"
  top: "prob"
}
如果train_val文件中还有其他的预处理层,就稍微复杂点。如下,在‘data‘层,在‘data’层和‘conv1’层(with bottom:”data”  / top:”conv1″). 插入一个层来计算输入数据的均值。

 

 

  1. layer {  
  2. name: “mean”  
  3. type: “Convolution”  
  4. <strong>bottom: “data”  
  5. top: “data”</strong>  
  6. param {  
  7. lr_mult: 0  
  8. decay_mult: 0  
  9. }  
  10.   
  11. …}  
在deploy.prototxt文件中,“mean” 层必须保留,只是容器改变,相应的‘conv1’也要改变 ( bottom:”mean”/ top:”conv1″ )。
[plain]
  1. layer {  
  2. name: “mean”  
  3. type: “Convolution”  
  4. <strong>bottom: “data”  
  5. top: “mean“</strong>  
  6. param {  
  7. lr_mult: 0  
  8. decay_mult: 0  
  9. }  
  10.   
  11. …}  

 

4 caffe 创建模型与编写配置文件 train_val.prototxt;solver.prototxt;deploy.proto.txt

标签:

原文地址:http://www.cnblogs.com/carle-09/p/5779304.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!