码迷,mamicode.com
首页 > 其他好文 > 详细

SSD框架训练自己的数据集

时间:2016-08-17 16:47:50      阅读:3568      评论:0      收藏:0      [点我收藏+]

标签:

SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证。
本文介绍如何使用
SSD实现对自己数据集的训练和验证过程,内容包括:
1 数据集的标注
2 数据集的转换
3 使用SSD如何训练
4 使用SSD如何测试

1 数据集的标注 

  数据的标注使用
BBox-Label-Tool工具,该工具使用python实现,使用简单方便。
该工具生成的标签格式是
:

object_number
x1min y1min x1max y1max
x2min y2min x2max y2max
...
2 数据集的转换
  caffe训练使用LMDB格式的数据,ssd框架中提供了voc数据格式转换成LMDB格式的脚本。
所以实践中先将
BBox-Label-Tool标注的数据转换成voc数据格式,然后再转换成LMDB
格式。

2.1 voc数据格式

技术分享



(1)Annotations中保存的是xml格式的label信息
技术分享
<?xml version="1.0" ?>
<annotation>
    <folder>VOC2007</folder>
    <filename>1.jpg</filename>
    <source>
        <database>My Database</database>
        <annotation>VOC2007</annotation>
        <image>flickr</image>
        <flickrid>NULL</flickrid>
    </source>
    <owner>
        <flickrid>NULL</flickrid>
        <name>idaneel</name>
    </owner>
    <size>
        <width>320</width>
        <height>240</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
        <name>door</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>109</xmin>
            <ymin>3</ymin>
            <xmax>199</xmax>
            <ymax>204</ymax>
        </bndbox>
    </object>
</annotation>
VOC XML内容信息

技术分享







(2)ImageSet目录下的Main目录里存放的是用于表示训练的图片集和测试的图片集

技术分享




(3)JPEGImages目录下存放所有图片集

技术分享







(4)label目录下保存的是BBox-Label-Tool工具标注好的bounding box坐标文件,
该目录下的文件就是待转换的
label标签文件。

技术分享





2.2 Label转换成VOC数据格式
BBox-Label-Tool工具标注好的bounding box坐标文件转换成VOC数据格式的形式.
具体的转换过程包括了两个步骤:
(1)BBox-Label-Tool下的txt格式保存的bounding box信息转换成VOC数据格式下以xml方式表示
(2)生成用于训练的数据集和用于测试的数据集。
用python实现了上述两个步骤的换转。
createXml.py 完成txt到xml的转换; 执行脚本./createXml.py
%classname%
技术分享
#!/usr/bin/env python

import os
import sys
import cv2
from itertools import islice
from xml.dom.minidom import Document

labels=label
imgpath=JPEGImages/
xmlpath_new=Annotations/
foldername=VOC2007


try:
    labelName = sys.argv[1]
except:
    print Please input class name
    print ./createXml dog
    os._exit(0)

def insertObject(doc, datas):
    obj = doc.createElement(object)
    name = doc.createElement(name)
    name.appendChild(doc.createTextNode(labelName))
    obj.appendChild(name)
    pose = doc.createElement(pose)
    pose.appendChild(doc.createTextNode(Unspecified))
    obj.appendChild(pose)
    truncated = doc.createElement(truncated)
    truncated.appendChild(doc.createTextNode(str(0)))
    obj.appendChild(truncated)
    difficult = doc.createElement(difficult)
    difficult.appendChild(doc.createTextNode(str(0)))
    obj.appendChild(difficult)
    bndbox = doc.createElement(bndbox)
    
    xmin = doc.createElement(xmin)
    xmin.appendChild(doc.createTextNode(str(datas[0])))
    bndbox.appendChild(xmin)
    
    ymin = doc.createElement(ymin)                
    ymin.appendChild(doc.createTextNode(str(datas[1])))
    bndbox.appendChild(ymin)                
    xmax = doc.createElement(xmax)                
    xmax.appendChild(doc.createTextNode(str(datas[2])))
    bndbox.appendChild(xmax)                
    ymax = doc.createElement(ymax)
    ymax.appendChild(doc.createTextNode(str(datas[3])[0:-1]))
    bndbox.appendChild(ymax)
    obj.appendChild(bndbox)                
    return obj

def create():
    for walk in os.walk(labels):
        for each in walk[2]:
            fidin=open(walk[0] + /+ each,r)
            objIndex = 0
            for data in islice(fidin, 1, None):        
                objIndex += 1
                data=data.strip(\n)
                datas = data.split( )
                pictureName = each.replace(.txt, .jpg)
                imageFile = imgpath + pictureName
                img = cv2.imread(imageFile)
                imgSize = img.shape
                if 1 == objIndex:
                    xmlName = each.replace(.txt, .xml)
                    f = open(xmlpath_new + xmlName, "w")
                    doc = Document()
                    annotation = doc.createElement(annotation)
                    doc.appendChild(annotation)
                    
                    folder = doc.createElement(folder)
                    folder.appendChild(doc.createTextNode(foldername))
                    annotation.appendChild(folder)
                    
                    filename = doc.createElement(filename)
                    filename.appendChild(doc.createTextNode(pictureName))
                    annotation.appendChild(filename)
                    
                    source = doc.createElement(source)                
                    database = doc.createElement(database)
                    database.appendChild(doc.createTextNode(My Database))
                    source.appendChild(database)
                    source_annotation = doc.createElement(annotation)
                    source_annotation.appendChild(doc.createTextNode(foldername))
                    source.appendChild(source_annotation)
                    image = doc.createElement(image)
                    image.appendChild(doc.createTextNode(flickr))
                    source.appendChild(image)
                    flickrid = doc.createElement(flickrid)
                    flickrid.appendChild(doc.createTextNode(NULL))
                    source.appendChild(flickrid)
                    annotation.appendChild(source)
                    
                    owner = doc.createElement(owner)
                    flickrid = doc.createElement(flickrid)
                    flickrid.appendChild(doc.createTextNode(NULL))
                    owner.appendChild(flickrid)
                    name = doc.createElement(name)
                    name.appendChild(doc.createTextNode(idaneel))
                    owner.appendChild(name)
                    annotation.appendChild(owner)
                    
                    size = doc.createElement(size)
                    width = doc.createElement(width)
                    width.appendChild(doc.createTextNode(str(imgSize[1])))
                    size.appendChild(width)
                    height = doc.createElement(height)
                    height.appendChild(doc.createTextNode(str(imgSize[0])))
                    size.appendChild(height)
                    depth = doc.createElement(depth)
                    depth.appendChild(doc.createTextNode(str(imgSize[2])))
                    size.appendChild(depth)
                    annotation.appendChild(size)
                    
                    segmented = doc.createElement(segmented)
                    segmented.appendChild(doc.createTextNode(str(0)))
                    annotation.appendChild(segmented)            
                    annotation.appendChild(insertObject(doc, datas))
                else:
                    annotation.appendChild(insertObject(doc, datas))
            try:
                f.write(doc.toprettyxml(indent =     ))
                f.close()
                fidin.close()
            except:
                pass
   
          
if __name__ == __main__:
    create()
createXml.py

  createTest.py 生成训练集和测试集标识文件; 执行脚本

  ./createTest.py %startID% %endID% %testNumber%


技术分享
#!/usr/bin/env python


import os
import sys
import random


try:
    start = int(sys.argv[1])
    end = int(sys.argv[2])
    test = int(sys.argv[3])
    allNum = end-start+1
except:
    print Please input picture range
    print ./createTest.py 1 1500 500
    os._exit(0)

b_list = range(start,end)
blist_webId = random.sample(b_list, test)
blist_webId = sorted(blist_webId) 
allFile = []

testFile = open(ImageSets/Main/test.txt, w)
trainFile = open(ImageSets/Main/trainval.txt, w)

for i in range(allNum):
    allFile.append(i+1)

for test in blist_webId:
    allFile.remove(test)
    testFile.write(str(test) + \n)
    
for train in allFile:
    trainFile.write(str(train) + \n)
testFile.close()
trainFile.close()
createTest.py

说明: 由于BBox-Label-Tool实现相对简单,该工具每次只能对一个类别进行打标签,所以转换脚本

每一次也是对一个类别进行数据的转换,这个问题后续需要优化改进。

2.3  VOC数据转换成LMDB数据

  SSD提供了VOC数据到LMDB数据的转换脚本 data/VOC0712/create_list.sh 和 ./data/VOC0712/create_data.sh,这两个脚本是完全针对VOC0712目录下的数据进行的转换。
  实现中为了不破坏VOC0712目录下的数据内容,针对我们自己的数据集,修改了上面这两个脚本,
将脚本中涉及到VOC0712的信息替换成我们自己的目录信息。
在处理我们的数据集时,将VOC0712替换成indoor。
具体的步骤如下:
  (1) 在 $HOME/data/VOCdevkit目录下创建indoor目录,该目录中存放自己转换完成的VOC数据集;
  (2) $CAFFE_ROOT/examples目录下创建indoor目录;
(3) $CAFFE_ROOT/data目录下创建indoor目录,同时将data/VOC0712下的create_list.sh,create_data.sh,labelmap_voc.prototxt
这三个文件copy到indoor目录下,分别重命名为
create_list_indoor.sh,create_data_indoor.sh, labelmap_indoor.prototxt
  (4)对上面新生成的两个create文件进行修改,主要修改是将VOC0712相关的信息替换成indoor
  修改后的这两个文件分别为:  
技术分享
#!/bin/bash

root_dir=$HOME/data/VOCdevkit/
sub_dir=ImageSets/Main
bash_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

for dataset in trainval test    
do
  dst_file=$bash_dir/$dataset.txt
  if [ -f $dst_file ]
  then
    rm -f $dst_file
  fi
  for name in indoor
  do
    if [[ $dataset == "test" && $name == "VOC2012" ]]
    then
      continue
    fi
    echo "Create list for $name $dataset..."
    dataset_file=$root_dir/$name/$sub_dir/$dataset.txt

    img_file=$bash_dir/$dataset"_img.txt"
    cp $dataset_file $img_file
    sed -i "s/^/$name\/JPEGImages\//g" $img_file
    sed -i "s/$/.jpg/g" $img_file

    label_file=$bash_dir/$dataset"_label.txt"
    cp $dataset_file $label_file
    sed -i "s/^/$name\/Annotations\//g" $label_file
    sed -i "s/$/.xml/g" $label_file

    paste -d  $img_file $label_file >> $dst_file

    rm -f $label_file
    rm -f $img_file
  done
  # Generate image name and size infomation.
  if [ $dataset == "test" ]
  then
    $bash_dir/../../build/tools/get_image_size $root_dir $dst_file $bash_dir/$dataset"_name_size.txt"
  fi

  # Shuffle trainval file.
  if [ $dataset == "trainval" ]
  then
    rand_file=$dst_file.random
    cat $dst_file | perl -MList::Util=shuffle -e print shuffle(<STDIN>); > $rand_file
    mv $rand_file $dst_file
  fi
done
create_list_indoor.sh

技术分享
cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd )
root_dir=$cur_dir/../..

cd $root_dir

redo=1
data_root_dir="$HOME/data/VOCdevkit"
dataset_name="indoor"
mapfile="$root_dir/data/$dataset_name/labelmap_indoor.prototxt"
anno_type="detection"
db="lmdb"
min_dim=0
max_dim=0
width=0
height=0

extra_cmd="--encode-type=jpg --encoded"
if [ $redo ]
then
  extra_cmd="$extra_cmd --redo"
fi
for subset in test trainval
do
  python $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt $data_root_dir/$dataset_name/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name
done
create_data_indoor.sh
        (5)修改labelmap_indoor.prototxt,将该文件中的类别修改成和自己的数据集相匹配,注意需要保留一个label 0 , background类别
技术分享
item {
  name: "none_of_the_above"
  label: 0
  display_name: "background"
}
item {
  name: "door"
  label: 1
  display_name: "door"
}
labelmap_indoor.prototxt

  完成上面步骤的修改后,可以开始LMDB数据数据的制作,在$CAFFE_ROOT目录下分别运行:

  ./data/indoor/create_list_indoor.sh

  ./data/indoor/create_data_indoor.sh

  命令执行完毕后,可以在$CAFFE_ROOT/indoor目录下查看转换完成的LMDB数据数据。

3 使用SSD进行自己数据集的训练

训练时使用ssd demo中提供的预训练好的VGGnet model : VGG_ILSVRC_16_layers_fc_reduced.caffemodel
将该模型保存到$CAFFE_ROOT/models/VGGNet下。
将ssd_pascal.py copy一份 ssd_pascal_indoor.py文件, 根据自己的数据集修改ssd_pascal_indoor.py
主要修改点:
(1)train_data和test_data修改成指向自己的数据集LMDB
   train_data = "examples/indoor/indoor_trainval_lmdb"
test_data = "examples/indoor/indoor_test_lmdb"
(2) num_test_image该变量修改成自己数据集中测试数据的数量
(3)num_classes 该变量修改成自己数据集中 标签类别数量数 + 1

针对我的数据集,ssd_pascal_indoor.py的内容为:
技术分享
from __future__ import print_function
import caffe
from caffe.model_libs import *
from google.protobuf import text_format

import math
import os
import shutil
import stat
import subprocess
import sys

# Add extra layers on top of a "base" network (e.g. VGGNet or Inception).
def AddExtraLayers(net, use_batchnorm=True):
    use_relu = True

    # Add additional convolutional layers.
    from_layer = net.keys()[-1]
    # TODO(weiliu89): Construct the name using the last layer to avoid duplication.
    out_layer = "conv6_1"
    ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 1, 0, 1)

    from_layer = out_layer
    out_layer = "conv6_2"
    ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 512, 3, 1, 2)

    for i in xrange(7, 9):
      from_layer = out_layer
      out_layer = "conv{}_1".format(i)
      ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1)

      from_layer = out_layer
      out_layer = "conv{}_2".format(i)
      ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2)

    # Add global pooling layer.
    name = net.keys()[-1]
    net.pool6 = L.Pooling(net[name], pool=P.Pooling.AVE, global_pooling=True)

    return net


### Modify the following parameters accordingly ###
# The directory which contains the caffe code.
# We assume you are running the script at the CAFFE_ROOT.
caffe_root = os.getcwd()

# Set true if you want to start training right after generating all files.
run_soon = True
# Set true if you want to load from most recently saved snapshot.
# Otherwise, we will load from the pretrain_model defined below.
resume_training = True
# If true, Remove old model files.
remove_old_models = False

# The database file for training data. Created by data/VOC0712/create_data.sh
train_data = "examples/indoor/indoor_trainval_lmdb"
# The database file for testing data. Created by data/VOC0712/create_data.sh
test_data = "examples/indoor/indoor_test_lmdb"
# Specify the batch sampler.
resize_width = 300
resize_height = 300
resize = "{}x{}".format(resize_width, resize_height)
batch_sampler = [
        {
                sampler: {
                        },
                max_trials: 1,
                max_sample: 1,
        },
        {
                sampler: {
                        min_scale: 0.3,
                        max_scale: 1.0,
                        min_aspect_ratio: 0.5,
                        max_aspect_ratio: 2.0,
                        },
                sample_constraint: {
                        min_jaccard_overlap: 0.1,
                        },
                max_trials: 50,
                max_sample: 1,
        },
        {
                sampler: {
                        min_scale: 0.3,
                        max_scale: 1.0,
                        min_aspect_ratio: 0.5,
                        max_aspect_ratio: 2.0,
                        },
                sample_constraint: {
                        min_jaccard_overlap: 0.3,
                        },
                max_trials: 50,
                max_sample: 1,
        },
        {
                sampler: {
                        min_scale: 0.3,
                        max_scale: 1.0,
                        min_aspect_ratio: 0.5,
                        max_aspect_ratio: 2.0,
                        },
                sample_constraint: {
                        min_jaccard_overlap: 0.5,
                        },
                max_trials: 50,
                max_sample: 1,
        },
        {
                sampler: {
                        min_scale: 0.3,
                        max_scale: 1.0,
                        min_aspect_ratio: 0.5,
                        max_aspect_ratio: 2.0,
                        },
                sample_constraint: {
                        min_jaccard_overlap: 0.7,
                        },
                max_trials: 50,
                max_sample: 1,
        },
        {
                sampler: {
                        min_scale: 0.3,
                        max_scale: 1.0,
                        min_aspect_ratio: 0.5,
                        max_aspect_ratio: 2.0,
                        },
                sample_constraint: {
                        min_jaccard_overlap: 0.9,
                        },
                max_trials: 50,
                max_sample: 1,
        },
        {
                sampler: {
                        min_scale: 0.3,
                        max_scale: 1.0,
                        min_aspect_ratio: 0.5,
                        max_aspect_ratio: 2.0,
                        },
                sample_constraint: {
                        max_jaccard_overlap: 1.0,
                        },
                max_trials: 50,
                max_sample: 1,
        },
        ]
train_transform_param = {
        mirror: True,
        mean_value: [104, 117, 123],
        resize_param: {
                prob: 1,
                resize_mode: P.Resize.WARP,
                height: resize_height,
                width: resize_width,
                interp_mode: [
                        P.Resize.LINEAR,
                        P.Resize.AREA,
                        P.Resize.NEAREST,
                        P.Resize.CUBIC,
                        P.Resize.LANCZOS4,
                        ],
                },
        emit_constraint: {
            emit_type: caffe_pb2.EmitConstraint.CENTER,
            }
        }
test_transform_param = {
        mean_value: [104, 117, 123],
        resize_param: {
                prob: 1,
                resize_mode: P.Resize.WARP,
                height: resize_height,
                width: resize_width,
                interp_mode: [P.Resize.LINEAR],
                },
        }

# If true, use batch norm for all newly added layers.
# Currently only the non batch norm version has been tested.
use_batchnorm = False
# Use different initial learning rate.
if use_batchnorm:
    base_lr = 0.0004
else:
    # A learning rate for batch_size = 1, num_gpus = 1.
    base_lr = 0.00004

# Modify the job name if you want.
job_name = "SSD_{}".format(resize)
# The name of the model. Modify it if you want.
model_name = "VGG_VOC0712_{}".format(job_name)

# Directory which stores the model .prototxt file.
save_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the snapshot of models.
snapshot_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the job script and log file.
job_dir = "jobs/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the detection results.
output_result_dir = "{}/data/VOCdevkit/results/VOC2007/{}/Main".format(os.environ[HOME], job_name)

# model definition files.
train_net_file = "{}/train.prototxt".format(save_dir)
test_net_file = "{}/test.prototxt".format(save_dir)
deploy_net_file = "{}/deploy.prototxt".format(save_dir)
solver_file = "{}/solver.prototxt".format(save_dir)
# snapshot prefix.
snapshot_prefix = "{}/{}".format(snapshot_dir, model_name)
# job script path.
job_file = "{}/{}.sh".format(job_dir, model_name)

# Stores the test image names and sizes. Created by data/VOC0712/create_list.sh
name_size_file = "data/indoor/test_name_size.txt"
# The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet.
pretrain_model = "models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel"
# Stores LabelMapItem.
label_map_file = "data/indoor/labelmap_indoor.prototxt"

# MultiBoxLoss parameters.
num_classes = 2
share_location = True
background_label_id=0
train_on_diff_gt = True
normalization_mode = P.Loss.VALID
code_type = P.PriorBox.CENTER_SIZE
neg_pos_ratio = 3.
loc_weight = (neg_pos_ratio + 1.) / 4.
multibox_loss_param = {
    loc_loss_type: P.MultiBoxLoss.SMOOTH_L1,
    conf_loss_type: P.MultiBoxLoss.SOFTMAX,
    loc_weight: loc_weight,
    num_classes: num_classes,
    share_location: share_location,
    match_type: P.MultiBoxLoss.PER_PREDICTION,
    overlap_threshold: 0.5,
    use_prior_for_matching: True,
    background_label_id: background_label_id,
    use_difficult_gt: train_on_diff_gt,
    do_neg_mining: True,
    neg_pos_ratio: neg_pos_ratio,
    neg_overlap: 0.5,
    code_type: code_type,
    }
loss_param = {
    normalization: normalization_mode,
    }

# parameters for generating priors.
# minimum dimension of input image
min_dim = 300
# conv4_3 ==> 38 x 38
# fc7 ==> 19 x 19
# conv6_2 ==> 10 x 10
# conv7_2 ==> 5 x 5
# conv8_2 ==> 3 x 3
# pool6 ==> 1 x 1
mbox_source_layers = [conv4_3, fc7, conv6_2, conv7_2, conv8_2, pool6]
# in percent %
min_ratio = 20
max_ratio = 95
step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2)))
min_sizes = []
max_sizes = []
for ratio in xrange(min_ratio, max_ratio + 1, step):
  min_sizes.append(min_dim * ratio / 100.)
  max_sizes.append(min_dim * (ratio + step) / 100.)
min_sizes = [min_dim * 10 / 100.] + min_sizes
max_sizes = [[]] + max_sizes
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]]
# L2 normalize conv4_3.
normalizations = [20, -1, -1, -1, -1, -1]
# variance used to encode/decode prior bboxes.
if code_type == P.PriorBox.CENTER_SIZE:
  prior_variance = [0.1, 0.1, 0.2, 0.2]
else:
  prior_variance = [0.1]
flip = True
clip = True

# Solver parameters.
# Defining which GPUs to use.
gpus = "0"
gpulist = gpus.split(",")
num_gpus = len(gpulist)

# Divide the mini-batch to different GPUs.
batch_size = 4
accum_batch_size = 32
iter_size = accum_batch_size / batch_size
solver_mode = P.Solver.CPU
device_id = 0
batch_size_per_device = batch_size
if num_gpus > 0:
  batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus))
  iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus)))
  solver_mode = P.Solver.GPU
  device_id = int(gpulist[0])

if normalization_mode == P.Loss.NONE:
  base_lr /= batch_size_per_device
elif normalization_mode == P.Loss.VALID:
  base_lr *= 25. / loc_weight
elif normalization_mode == P.Loss.FULL:
  # Roughly there are 2000 prior bboxes per image.
  # TODO(weiliu89): Estimate the exact # of priors.
  base_lr *= 2000.

# Which layers to freeze (no backward) during training.
freeze_layers = [conv1_1, conv1_2, conv2_1, conv2_2]

# Evaluate on whole test set.
num_test_image = 800
test_batch_size = 1
test_iter = num_test_image / test_batch_size

solver_param = {
    # Train parameters
    base_lr: base_lr,
    weight_decay: 0.0005,
    lr_policy: "step",
    stepsize: 40000,
    gamma: 0.1,
    momentum: 0.9,
    iter_size: iter_size,
    max_iter: 60000,
    snapshot: 40000,
    display: 10,
    average_loss: 10,
    type: "SGD",
    solver_mode: solver_mode,
    device_id: device_id,
    debug_info: False,
    snapshot_after_train: True,
    # Test parameters
    test_iter: [test_iter],
    test_interval: 10000,
    eval_type: "detection",
    ap_version: "11point",
    test_initialization: False,
    }

# parameters for generating detection output.
det_out_param = {
    num_classes: num_classes,
    share_location: share_location,
    background_label_id: background_label_id,
    nms_param: {nms_threshold: 0.45, top_k: 400},
    save_output_param: {
        output_directory: output_result_dir,
        output_name_prefix: "comp4_det_test_",
        output_format: "VOC",
        label_map_file: label_map_file,
        name_size_file: name_size_file,
        num_test_image: num_test_image,
        },
    keep_top_k: 200,
    confidence_threshold: 0.01,
    code_type: code_type,
    }

# parameters for evaluating detection results.
det_eval_param = {
    num_classes: num_classes,
    background_label_id: background_label_id,
    overlap_threshold: 0.5,
    evaluate_difficult_gt: False,
    name_size_file: name_size_file,
    }

### Hopefully you don‘t need to change the following ###
# Check file.
check_if_exist(train_data)
check_if_exist(test_data)
check_if_exist(label_map_file)
check_if_exist(pretrain_model)
make_if_not_exist(save_dir)
make_if_not_exist(job_dir)
make_if_not_exist(snapshot_dir)

# Create train net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device,
        train=True, output_label=True, label_map_file=label_map_file,
        transform_param=train_transform_param, batch_sampler=batch_sampler)

VGGNetBody(net, from_layer=data, fully_conv=True, reduced=True, dilated=True,
    dropout=False, freeze_layers=freeze_layers)

AddExtraLayers(net, use_batchnorm)

mbox_layers = CreateMultiBoxHead(net, data_layer=data, from_layers=mbox_source_layers,
        use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
        aspect_ratios=aspect_ratios, normalizations=normalizations,
        num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
        prior_variance=prior_variance, kernel_size=3, pad=1)

# Create the MultiBoxLossLayer.
name = "mbox_loss"
mbox_layers.append(net.label)
net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param,
        loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value(TRAIN)),
        propagate_down=[True, True, False, False])

with open(train_net_file, w) as f:
    print(name: "{}_train".format(model_name), file=f)
    print(net.to_proto(), file=f)
shutil.copy(train_net_file, job_dir)

# Create test net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size,
        train=False, output_label=True, label_map_file=label_map_file,
        transform_param=test_transform_param)

VGGNetBody(net, from_layer=data, fully_conv=True, reduced=True, dilated=True,
    dropout=False, freeze_layers=freeze_layers)

AddExtraLayers(net, use_batchnorm)

mbox_layers = CreateMultiBoxHead(net, data_layer=data, from_layers=mbox_source_layers,
        use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
        aspect_ratios=aspect_ratios, normalizations=normalizations,
        num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
        prior_variance=prior_variance, kernel_size=3, pad=1)

conf_name = "mbox_conf"
if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX:
  reshape_name = "{}_reshape".format(conf_name)
  net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes]))
  softmax_name = "{}_softmax".format(conf_name)
  net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
  flatten_name = "{}_flatten".format(conf_name)
  net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
  mbox_layers[1] = net[flatten_name]
elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC:
  sigmoid_name = "{}_sigmoid".format(conf_name)
  net[sigmoid_name] = L.Sigmoid(net[conf_name])
  mbox_layers[1] = net[sigmoid_name]

net.detection_out = L.DetectionOutput(*mbox_layers,
    detection_output_param=det_out_param,
    include=dict(phase=caffe_pb2.Phase.Value(TEST)))
net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label,
    detection_evaluate_param=det_eval_param,
    include=dict(phase=caffe_pb2.Phase.Value(TEST)))

with open(test_net_file, w) as f:
    print(name: "{}_test".format(model_name), file=f)
    print(net.to_proto(), file=f)
shutil.copy(test_net_file, job_dir)

# Create deploy net.
# Remove the first and last layer from test net.
deploy_net = net
with open(deploy_net_file, w) as f:
    net_param = deploy_net.to_proto()
    # Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net.
    del net_param.layer[0]
    del net_param.layer[-1]
    net_param.name = {}_deploy.format(model_name)
    net_param.input.extend([data])
    net_param.input_shape.extend([
        caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])])
    print(net_param, file=f)
shutil.copy(deploy_net_file, job_dir)

# Create solver.
solver = caffe_pb2.SolverParameter(
        train_net=train_net_file,
        test_net=[test_net_file],
        snapshot_prefix=snapshot_prefix,
        **solver_param)

with open(solver_file, w) as f:
    print(solver, file=f)
shutil.copy(solver_file, job_dir)

max_iter = 0
# Find most recent snapshot.
for file in os.listdir(snapshot_dir):
  if file.endswith(".solverstate"):
    basename = os.path.splitext(file)[0]
    iter = int(basename.split("{}_iter_".format(model_name))[1])
    if iter > max_iter:
      max_iter = iter

train_src_param = --weights="{}" \\\n.format(pretrain_model)
if resume_training:
  if max_iter > 0:
    train_src_param = --snapshot="{}_iter_{}.solverstate" \\\n.format(snapshot_prefix, max_iter)

if remove_old_models:
  # Remove any snapshots smaller than max_iter.
  for file in os.listdir(snapshot_dir):
    if file.endswith(".solverstate"):
      basename = os.path.splitext(file)[0]
      iter = int(basename.split("{}_iter_".format(model_name))[1])
      if max_iter > iter:
        os.remove("{}/{}".format(snapshot_dir, file))
    if file.endswith(".caffemodel"):
      basename = os.path.splitext(file)[0]
      iter = int(basename.split("{}_iter_".format(model_name))[1])
      if max_iter > iter:
        os.remove("{}/{}".format(snapshot_dir, file))

# Create job file.
with open(job_file, w) as f:
  f.write(cd {}\n.format(caffe_root))
  f.write(./build/tools/caffe train \\\n)
  f.write(--solver="{}" \\\n.format(solver_file))
  f.write(train_src_param)
  if solver_param[solver_mode] == P.Solver.GPU:
    f.write(--gpu {} 2>&1 | tee {}/{}.log\n.format(gpus, job_dir, model_name))
  else:
    f.write(2>&1 | tee {}/{}.log\n.format(job_dir, model_name))

# Copy the python script to job_dir.
py_file = os.path.abspath(__file__)
shutil.copy(py_file, job_dir)

# Run the job.
os.chmod(job_file, stat.S_IRWXU)
if run_soon:
  subprocess.call(job_file, shell=True)
ssd_pascal_indoor.py
训练命令:
python examples/ssd/ssd_pascal_indoor.py

 

 
未完待续......









SSD框架训练自己的数据集

标签:

原文地址:http://www.cnblogs.com/objectDetect/p/5780006.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!