码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 5855 Less Time, More profit(最大权闭合子图)

时间:2016-08-17 21:26:50      阅读:159      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:点击打开链接

思路:

最大权闭合子图的裸题,  给个学习资料:点击打开链接

当结点即有正权值又有负数权值时, 怎么求任意闭合子图的最大和呢?  只要求出最小割E, 用总的正数权值TOT 减去E就是答案。

细节参见代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 1000000000;
const int mod = 1000000000;
const int maxn = 644;
int n, m, time[maxn], pay[maxn], pro[maxn];
struct Edge {
  int from, to, cap, flow;
};
bool operator < (const Edge& a, const Edge& b) {
  return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic {
  int n, m, s, t;        // 结点数, 边数(包括反向弧), 源点编号, 汇点编号
  vector<Edge> edges;    // 边表, edges[e]和edges[e^1]互为反向弧
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];        // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];         // 当前弧指针
void init(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
}
void AddEdge(int from, int to, int cap) {
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
}
bool BFS() {
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(s);
    vis[s] = 1;
    d[s] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(!vis[e.to] && e.cap > e.flow) {  //只考虑残量网络中的弧
          vis[e.to] = 1;
          d[e.to] = d[x] + 1;
          Q.push(e.to);
        }
      }
    }
    return vis[t];
}
int DFS(int x, int a) {
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++) {  //上次考虑的弧
      Edge& e = edges[G[x][i]];
      if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
        e.flow += f;
        edges[G[x][i]^1].flow -= f;
        flow += f;
        a -= f;
        if(a == 0) break;
      }
    }
    return flow;
}
int Maxflow(int s, int t) {
    this->s = s; this->t = t;
    int flow = 0;
    while(BFS()) {
      memset(cur, 0, sizeof(cur));
      flow += DFS(s, INF);
    }
    return flow;
  }
}g;
int L;
vector<int> G[maxn];
int ok(int mid) {
    int s = 0, t = n + m + 1;
    g.init(n + m + 10);
    for(int i = 1; i <= n; i++) {
        if(time[i] > mid) g.AddEdge(i, t, INF);
        else g.AddEdge(i, t, pay[i]);
    }
    int tot = 0;
    for(int i = 1; i <= m; i++) {
        int len = G[i].size();
        for(int j = 0; j < len; j++) {
            int cur = G[i][j];
            g.AddEdge(i+n, cur, INF);
        }
        g.AddEdge(s, i+n, pro[i]);
        tot += pro[i];
    }
    int ans = g.Maxflow(s, t);
    return tot - ans;

}
int T, k ,v, kase = 0;
int main() {
    scanf("%d",&T);
    while(T--) {
        scanf("%d%d%d",&n,&m,&L);
        int l = 0, r = 0;
        for(int i = 1; i <= n; i++) {
            scanf("%d%d", &pay[i], &time[i]);
            r = max(r, time[i]);
        }
        for(int i = 1; i <= m; i++) {
            scanf("%d%d", &pro[i], &k);
            G[i].clear();
            for(int j = 0; j < k; j++) {
                scanf("%d", &v);
                G[i].push_back(v);
            }
            sort(G[i].begin(), G[i].end());
        }
        printf("Case #%d: ", ++kase);
        while(r > l) {
            int mid = (l + r) >> 1;
            if(ok(mid) >= L) r = mid;
            else l = mid + 1;
        }
        int cur = ok(l);
        if(cur >= L) printf("%d %d\n", l, cur);
        else printf("impossible\n");
    }
    return 0;
}


HDU 5855 Less Time, More profit(最大权闭合子图)

标签:

原文地址:http://blog.csdn.net/weizhuwyzc000/article/details/52234639

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!