标签:
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=3662
思路:三维凸包模板。
#include<cstdio> #include<vector> #include<cstring> #include<iostream> #include<algorithm> #define PR 1e-8 #define N 510 using namespace std; struct TPoint { double x,y,z; TPoint() {} TPoint(double _x,double _y,double _z):x(_x),y(_y),z(_z) {} TPoint operator - (const TPoint p) { return TPoint(x-p.x,y-p.y,z-p.z); } TPoint operator * (const TPoint p) { return TPoint(y*p.z-z*p.y,z*p.x-x*p.z,x*p.y-y*p.x); } double operator ^ (const TPoint p) { return x*p.x+y*p.y+z*p.z; }//点积 }; struct fac { int a,b,c;//凸包一个面上的三个点的编号 bool ok;//该面是否是最终凸包中的面 }; struct T3dull { int n;//初始点数 TPoint ply[N];//初始点 int trianglecnt;//凸包上三角形数 fac tri[N];//凸包三角形 int vis[N][N];//点i到点j是属于哪个面 double dist(TPoint a) { return sqrt(a.x*a.x+a.y*a.y+a.z*a.z); }//两点长度 double area(TPoint a,TPoint b,TPoint c) { return dist((b-a)*(c-a)); }//三角形面积*2 double volume(TPoint a,TPoint b,TPoint c,TPoint d) { return (b-a)*(c-a)^(d-a); }//四面体有向体积*6 double ptoplane(TPoint &p,fac &f)//正:点在面同向 { TPoint m=ply[f.b]-ply[f.a],n=ply[f.c]-ply[f.a],t=p-ply[f.a]; return (m*n)^t; } void deal(int p,int a,int b) { int f=vis[a][b]; fac add; if(tri[f].ok) { if((ptoplane(ply[p],tri[f]))>PR) dfs(p,f); else { add.a=b,add.b=a,add.c=p,add.ok=1; vis[p][b]=vis[a][p]=vis[b][a]=trianglecnt; tri[trianglecnt++]=add; } } } void dfs(int p,int cnt)//维护凸包,如果点p在凸包外更新凸包 { tri[cnt].ok=0; deal(p,tri[cnt].b,tri[cnt].a); deal(p,tri[cnt].c,tri[cnt].b); deal(p,tri[cnt].a,tri[cnt].c); } bool same(int s,int e)//判断两个面是否为同一面 { TPoint a=ply[tri[s].a],b=ply[tri[s].b],c=ply[tri[s].c]; return fabs(volume(a,b,c,ply[tri[e].a]))<PR&&fabs(volume(a,b,c,ply[tri[e].b]))<PR&&fabs(volume(a,b,c,ply[tri[e].c]))<PR; } void construct()//构建凸包 { int i,j; trianglecnt=0; if(n<4) return ; bool tmp=1; for(int i=1; i<n; i++) //前两点不共点 { if((dist(ply[0]-ply[i]))>PR) { swap(ply[1],ply[i]); tmp=0; break; } } if(tmp) return ; tmp=1; for(i=2; i<n; i++) //前三点不共线 { if((dist((ply[0]-ply[1])*(ply[1]-ply[i])))>PR) { swap(ply[2],ply[i]); tmp=0; break; } } if(tmp) return ; tmp=1; for(i=3; i<n; i++) //前四点不共面 { if(fabs((ply[0]-ply[1])*(ply[1]-ply[2])^(ply[0]-ply[i]))>PR) { swap(ply[3],ply[i]); tmp=0; break; } } if(tmp) return ; fac add; for(int i=0; i<4; i++) //构建初始四面体 { add.a=(i+1)%4,add.b=(i+2)%4,add.c=(i+3)%4,add.ok=1; if((ptoplane(ply[i],add))>0) swap(add.b,add.c); vis[add.a][add.b]=vis[add.b][add.c]=vis[add.c][add.a]=trianglecnt; tri[trianglecnt++]=add; } for(int i=4; i<n; i++) //构建更新凸包 { for(j=0; j<trianglecnt; j++) { if(tri[j].ok&&(ptoplane(ply[i],tri[j]))>PR) { dfs(i,j); break; } } } int cnt=trianglecnt; trianglecnt=0; for(i=0; i<cnt; i++) { if(tri[i].ok) tri[trianglecnt++]=tri[i]; } } double area()//表面积 { double ret=0; for(int i=0; i<trianglecnt; i++) ret+=area(ply[tri[i].a],ply[tri[i].b],ply[tri[i].c]); return ret/2.0; } double volume()//体积 { TPoint p(0,0,0); double ret=0; for(int i=0; i<trianglecnt; i++) ret+=volume(p,ply[tri[i].a],ply[tri[i].b],ply[tri[i].c]); return fabs(ret/6); } int facetri()//表面三角形数 { return trianglecnt; } int facepolygon()//表面多边形数 { int ans=0,i,j,k; for(i=0; i<trianglecnt; i++) { for(j=0,k=1; j<i; j++) { if(same(i,j)) { k=0; break; } } ans+=k; } return ans; } } hull; int main() { while(~scanf("%d",&hull.n)) { int i; for(i=0; i<hull.n; i++) scanf("%lf%lf%lf",&hull.ply[i].x,&hull.ply[i].y,&hull.ply[i].z); hull.construct(); printf("%d\n",hull.facepolygon()); } return 0; }
标签:
原文地址:http://blog.csdn.net/wang2147483647/article/details/52234061