码迷,mamicode.com
首页 > 其他好文 > 详细

常用排序算法总结

时间:2014-08-09 13:21:07      阅读:214      评论:0      收藏:0      [点我收藏+]

标签:blog   http   数据   2014   ar   div   html   算法   

1、

bubuko.com,布布扣
 

2、研究排序算法的稳定性有何意义?

  首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前两个相等的数据其在序列中的先后位置顺序与排序后它们两个先后位置顺序相同。

再简单具体一点,如果A i == A j,Ai 原来在 Aj 位置前,排序后 Ai  仍然是在 Aj 位置前。 

下面我们分析一下稳定性的好处:

(1)如果排序算法是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所利用。

基数排序就是这样,先按低位排序,逐次按高位排序,那么,低位相同的数据元素其先后位置顺序即使在高位也相同时是不会改变的。详细请参见随笔《基数排序》。

(2)学习排序原理时,可能编的程序里面要排序的元素都是简单类型,实际上真正应用时,可能是对一个复杂类型(自定义类型)的数组排序,

而排序的键值仅仅只是这个元素中的一个属性,对于一个简单类型,数字值就是其全部意义,即使交换了也看不出什么不同。

但是,对于复杂类型,交换的话可能就会使原本不应该交换的元素交换了。比如:一个“学生”数组,欲按照年龄排序,“学生”这个对象不仅含有“年龄”,还有其它很多属性。

假使原数组是把学号作为主键由小到大进行的数据整理。而稳定的排序会保证比较时,如果两个学生年龄相同,一定不会交换。

那也就意味着尽管是对“年龄”进行了排序,但是学号顺序仍然是由小到大的要求。

3、各种排序算法稳定性分析

现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。 

(1)冒泡排序 

冒泡排序就是把小的元素往前调(或者把大的元素往后调)。注意是相邻的两个元素进行比较,而且是否需要交换也发生在这两个元素之间。

所以,如果两个元素相等,我想你是不会再无聊地把它们俩再交换一下。

如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个元素相邻起来,最终也不会交换它俩的位置,所以相同元素经过排序后顺序并没有改变。

所以冒泡排序是一种稳定排序算法。 

(2)选择排序

选择排序即是给每个位置选择待排序元素中当前最小的元素。比如给第一个位置选择最小的,在剩余元素里面给第二个位置选择次小的,

依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。

那么,在一趟选择时,如果当前锁定元素比后面一个元素大,而后面较小的那个元素又出现在一个与当前锁定元素相等的元素后面,那么交换后位置顺序显然改变了。

呵呵!比较拗口,举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。

所以选择排序不是一个稳定的排序算法。 

(3)插入排序

插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,也就是第一个元素(默认它有序)。

比较是从有序序列的末尾开始,也就是把待插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面。

否则一直往前找直到找到它该插入的位置。如果遇见一个与插入元素相等的,那么把待插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序仍是排好序后的顺序,所以插入排序是稳定的。 

(4)快速排序

快速排序有两个方向,左边的i下标一直往右走(当条件a[i] <= a[center_index]时),其中center_index是中枢元素的数组下标,一般取为数组第0个元素。

而右边的j下标一直往左走(当a[j] > a[center_index]时)。

如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。

在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11 

现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱。

所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。 

(5)归并排序

归并排序是把序列递归地分成短序列,递归

 

常用排序算法总结,布布扣,bubuko.com

常用排序算法总结

标签:blog   http   数据   2014   ar   div   html   算法   

原文地址:http://www.cnblogs.com/anthony0859/p/3900824.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!