标签:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at (0,0)
, (0,4)
, and (2,2)
:
1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point (0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Analysis:
https://discuss.leetcode.com/topic/51109/8ms-c-dp-solution-with-o-mn-time-o-m-n-space
Solution:
1 public class Solution { 2 public int minTotalDistance(int[][] grid) { 3 if (grid.length==0 || grid[0].length==0) return 0; 4 5 int rows = grid.length, cols = grid[0].length; 6 int[] xNums = new int[cols]; 7 int[] yNums = new int[rows]; 8 int initDis = 0; // Distance to (0,0) 9 10 for (int i=0;i<rows;i++){ 11 int sum = 0; 12 for (int j=0;j<cols;j++){ 13 sum += grid[i][j]; 14 xNums[j] +=sum; 15 // Update init distance 16 if (grid[i][j] == 1){ 17 initDis += (i+j); 18 } 19 } 20 yNums[i] = xNums[cols-1]; 21 } 22 23 int totalNum = xNums[cols-1]; 24 // find out the optimal point on xNums. 25 int minDis = initDis; 26 for (int i=1;i<cols;i++){ 27 int curDis = minDis + xNums[i-1] - (totalNum - xNums[i-1]); 28 if (curDis < minDis){ 29 minDis = curDis; 30 } else break; 31 } 32 33 // find out the optimal point on yNums. 34 for (int i=1;i<rows;i++){ 35 int curDis = minDis + yNums[i-1] - (totalNum -yNums[i-1]); 36 if (curDis < minDis) { 37 minDis = curDis; 38 } else break; 39 } 40 return minDis; 41 } 42 }
标签:
原文地址:http://www.cnblogs.com/lishiblog/p/5792395.html