标签:
---恢复内容开始---
1.json & pickle
磁盘上只能存储字符串或二进制数据,直接存字典、列表、元组等是存不了的,所以需要把各种数据转换成字符串格式,然后再存到硬盘。
直接将一个字典类型的数据写入硬盘,提示错误:TypeError: write() argument must be str, not dict。
将内存里的数据类型(字典、列表、元组、集合、字符串等)转换为字符串格式存入硬盘,这个过程叫序列化。反序列化就是再把硬盘里的数据加载回内存。
可以通过str()方法把一个字典类型变成字符串类型,然后存入硬盘;也可以通过eval()方法将一个字符串变成字典,重新读入程序。但是,str()和eval()实际上并不是通用的方法,而且有点low,最好使用专业的方法json.dumps()和json.loads()。
序列化示例:
1 import json
2
3 info = {
4 ‘name‘:‘ci‘,
5 ‘age‘:22
6 }
7 f = open(‘test.t‘,‘w‘)
8 print(type(info))
9 print(type(json.dumps(info)))
10 f.write(json.dumps(info))
11
12
13 结果:
14 <class ‘dict‘ at 0x87ffe0>
15 <class ‘str‘ at 0x889360>
16 #数据已经写入文件test.t里。
反序列化示例:
1 import json
2
3 f = open(‘test.t‘)
4 fr = f.read()
5 print(type(fr))
6 frj = json.loads(fr)
7 print(type(frj))
8 print(frj[‘age‘])
9
10
11 结果:
12 <class ‘str‘ at 0x889360>
13 <class ‘dict‘ at 0x87ffe0>
14 22
15 #直接把硬盘上的str信息转化为字典,并用key得到value。
json默认只支持最基本的简单的数据类型(字典、列表、元组、集合、字符串等),像什么方法、类json使无法序列化的。因为json最主要的作用是实现不同语言间的数据交互,比如把python的列表转化成C的列表,假如要序列化类啊、方法啊,那就麻烦多了,所以json只支持序列化简单的数据类型。
xml的作用跟json一样,但是xml很麻烦,以前的人们都用xml实现不同语言的数据交互,但是json出来后,json就是主流了,xml必将被完全取代。
下例展示json无法序列化一个方法:
1 import json
2 def p():
3 print(‘test‘)
4
5 info = {
6 ‘name‘:‘ci‘,
7 ‘age‘:22,
8 ‘p_neicun_dizhi‘:p
9 }
10 print(info[‘p_neicun_dizhi‘])
11 f = open(‘test.t‘,‘w‘)
12 print(type(info))
13 print(type(json.dumps(info)))
14 f.write(json.dumps(info))
15
16 结果:
17 <function p at 0x7fd99a7f6a60>
18 Traceback (most recent call last):
19 TypeError: Object of type ‘function‘ is not JSON serializable
20 #提示方法不是一个可被JSON序列化的对象。
要想序列化复杂的东西,就要用到pickle了,pickle可以序列化所有的数据类型;pickle保存的数据只有python能识别,其他语言识别不了;pickle的用法与json一样。
pickle序列化示例:
1 import pickle
2
3 def p():
4 print(‘test‘)
5 info = {
6 ‘name‘:‘ci‘,
7 ‘age‘:22,
8 ‘p_neicun_dizhi‘:p
9 }
10 print(info[‘p_neicun_dizhi‘])
11 f = open(‘test.t‘,‘wb‘)
12 pickle.dump(info,f)
13
14 #文件模式改成了"wb"
pickle反序列化示例:
1 import pickle
2 def p():
3 print(‘test‘)
4 f = open(‘test.t‘,‘rb‘)
5 frj = pickle.load(f)
6 print(frj)
7 print(frj[‘p_neicun_dizhi‘]())
8
9 结果:
10 {‘p_neicun_dizhi‘: <function p at 0x7f99a5acaa60>, ‘age‘: 22, ‘name‘: ‘ci‘}
11 test
12
13 #文件模式“rb”
14 #反序列化的代码里要有一个序列化时的同名方法,不然会反序列化失败;因为在序列化完毕时,内存里的东西就被回收了,所以序列化只存了一个内存地址和方法名字,方法里的内容并没有存。
15 #反序列化只要有一个同名的方法就行,内容可以不一样,比如把上面代码的p方法里的内容改成天马行空的,一样可以调用。
pickle的dump,dumps和load,loads:
1 f = open(‘test‘,‘wb‘)
2 pickle.dump(info,f) 等价于 f.write(pickle.dumps(info))
3
4
5
6 f = open(‘test‘,‘rb‘)
7 pickle.load(f) 等价于 pickle.loads(f.read())
json是可以dump多次的,在python2.X里也可以load多次,但是在python3.X里允许dump多次但是只能load一次,这是有好处的,不然还得根据顺序一次次的dump。
json虽然可以dump多次,但是最好不要这样,最好是每个文件只dump一次,如果需要再dump就重新dump到另一个文件。像虚拟机的快照一样,你可以每天创建一个快照,快照都是独立的文件,每天的快照之间没有关系。
2.软件目录结构规范
"设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:
我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:
所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。
关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。
这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。
假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:
Foo/
|-- bin/
| |-- foo
|
|-- foo/
| |-- tests/
| | |-- __init__.py
| | |-- test_main.py
| |
| |-- __init__.py
| |-- main.py
|
|-- docs/
| |-- conf.py
| |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README
简要解释一下:
bin/
: 存放项目的一些可执行文件,当然你可以起名script/
之类的也行。foo/
: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/
存放单元测试代码; (3) 程序的入口最好命名为main.py
。docs/
: 存放一些文档。setup.py
: 安装、部署、打包的脚本。requirements.txt
: 存放软件依赖的外部Python包列表。README
: 项目说明文件。除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt
,ChangeLog.txt
文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章。
下面,再简单讲一下我对这些目录的理解和个人要求吧。
这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。
它需要说明以下几个事项:
我觉得有以上几点是比较好的一个README
。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。
可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。
一般来说,用setup.py
来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。
这个我是踩过坑的。
我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:
setup.py
可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。
setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py
当然,简单点自己写个安装脚本(deploy.sh
)替代setup.py
也未尝不可。
这个文件存在的目的是:
setup.py
安装依赖时漏掉软件包。这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10
这种格式,要求是这个格式能被pip
识别,这样就可以简单的通过 pip install -r requirements.txt
来把所有Python包依赖都装好了。具体格式说明: 点这里。
conf.py
放在源码目录下,而是放在docs/
目录下。很多项目对配置文件的使用做法是:
import conf
这种形式来在代码中使用配置。这种做法我不太赞同:
conf.py
这个文件。所以,我认为配置的使用,更好的方式是,
能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。
所以,不应当在代码中直接import conf
来使用配置文件。上面目录结构中的conf.py
,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py
启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py
你可以换个类似的名字,比如settings.py
。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml
之类的。
3.导入非环境变量里的自定义的包
print(__file__) ,这个返回的是当前.py文件的相对路径,在IDE里程序运行结果显示的是绝对路径,其实是相对路径,可以在终端上运行脚本就能看到真实的结果。
print(os.path.abspath(__file__)),这个返回当前.py文件的绝对路径。
print(os.path.dirname(os.path.abspath(__file__))),这个返回当前.py文件的父目录。
print(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))),这个返回当前.py文件的父目录的父目录。
然后定义变量,BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))),这个BASE_DIR就是这个项目的根目录,然后将这个根目录添加到环境变量,
sys.path.append(BASE_DIR),然后各子目录之间就能互相调用了。
这样做的目的是,将项目根目录添加到环境变量,就不会导致程序在别人电脑上无法运行,绝对路径是肯定不能用的。
---恢复内容结束---
标签:
原文地址:http://www.cnblogs.com/fuckily/p/5792351.html