标签:
[BZOJ2818]Gcd
试题描述
输入
输出
输入示例
4
输出示例
4
数据规模及约定
1<=N<=10^7
题解
对于每个质数 p,求数对 (x, y) ∈ [1, n] 满足 gcd(x, y) = p 的对数等价于求数对 (x, y) ∈ [1, n / p] 满足 x, y 互质的对数。不妨设 x ≤ y,对于每一个 y,比它小的 x 个数等于 phi(y).
然后线性筛预处理一下 phi 和 phi 的前缀和,枚举每个素数累计答案即可。
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> using namespace std; const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } int read() { int x = 0, f = 1; char c = Getchar(); while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = Getchar(); } while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = Getchar(); } return x * f; } #define maxn 10000010 #define LL long long int n; LL sum[maxn]; int prime[maxn], cnt, phi[maxn]; bool vis[maxn]; void phi_table() { int N = maxn - 10; for(int i = 2; i <= N; i++) { if(!vis[i]) prime[++cnt] = i, phi[i] = i - 1; for(int j = 1; j <= cnt && (LL)prime[j] * (LL)i <= (LL)N; j++) if(i % prime[j]) phi[i*prime[j]] = phi[i] * (prime[j] - 1), vis[i*prime[j]] = 1; else{ vis[i*prime[j]] = 1; phi[i*prime[j]] = phi[i] * prime[j]; break; } } return ; } int main() { phi_table(); n = read(); for(int i = 1; i <= n; i++) sum[i] = sum[i-1] + (LL)phi[i]; // for(int i = 1; i <= n; i++) printf("%lld ", sum[i]); putchar(‘\n‘); LL ans = 0; for(int i = 1; i <= cnt && prime[i] <= n; i++) ans += (sum[n/prime[i]] << 1ll) + 1ll; printf("%lld\n", ans); return 0; }
标签:
原文地址:http://www.cnblogs.com/xiao-ju-ruo-xjr/p/5792580.html