标签:
题目地址:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=5388思路:二分Brocard angle设为rad,将两条边(AB,BC)按该角度旋转,求出两条边的交点P,判断CA与CP所成角度ang是否等于该角度,若rad>ang则rad应减小(r=mid),即使得ang变大,否则rad应增大(l=mid),直到两者相等。
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define debu using namespace std; const double pi=acos(-1.0); struct Point { double x,y; Point(double x=0,double y=0):x(x),y(y) {} void read() { scanf("%lf%lf",&x,&y); } }; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); } Vector operator - (Point A,Point B) { return Vector(A.x-B.x,A.y-B.y); } Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); } Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } bool operator < (const Point& a,const Point& b) { return a.x<b.x||(a.x==b.x&&a.y<b.y); } const double eps=1e-10; int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0?-1:1; } bool operator == (const Point& a ,const Point& b) { return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } Point A,B,C,tmp; double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A,A)); } double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; } double Angle(Vector A,Vector B) { return acos(Dot(A,B)/Length(A)/Length(B)); } Vector Rotate(Vector A,Vector B,double rad) { Vector tmp=A-B; return Vector(B.x+tmp.x*cos(rad)-tmp.y*sin(rad),B.y+tmp.x*sin(rad)+tmp.y*cos(rad)); } Point GetLineIntersection(Point P,Vector v,Point Q,Vector w) { Vector u=P-Q; double t=Cross(w,u)/Cross(v,w); return P+v*t; } int check(double rad) { Point b=Rotate(C,B,rad); Point a=Rotate(B,A,rad); tmp=GetLineIntersection(B,b-B,A,a-A); double ang=Angle(tmp-C,A-C); //cout<<rad<<" "<<a.x<<" "<<a.y<<" "<<b.x<<" "<<b.y<<" "<<tmp.x<<" "<<tmp.y<<" "<<ang<<endl; return rad-ang>eps; } int main() { #ifdef debug freopen("in.in","r",stdin); #endif // debug int t; scanf("%d",&t); while(t--) { int cas=0; double ax,ay,bx,by,cx,cy; scanf("%d",&cas); A.read(),B.read(),C.read(); double ang1=Angle(C-B,A-B),ang2=Angle(B-A,C-A),ang3=Angle(A-C,B-C); double l=0.0,r=min(ang1,min(ang2,min(pi/6,ang3))); while(r-l>eps) { double mid=(l+r)/2; if(check(mid)) r=mid; else l=mid; } printf("%d %.5f %.5f\n",cas,tmp.x,tmp.y); } return 0; }
标签:
原文地址:http://blog.csdn.net/wang2147483647/article/details/52269459