链接:http://poj.org/problem?id=2112
题意:有k个挤奶器,编号1~k,c头牛,编号k+1~k+c,每个挤奶器最多能给m头牛挤奶,给你一个k+c的邻接矩阵,要求每头牛都能挤奶并且要求c头牛需要走的所有路程中的最大路程最小,求这个最小的路。
思路:
1. 先用floyd处理出多源最短路
2. 用二分枚举答案的可能,初始上限应该为(200+30)*200,但是我这么开T了,可能因为代码太挫,改到1000,卡着时间过了,只能说poj数据弱了。后来看别人的代码,和我的做法一样但是用了邻接表,就能设上限为40000了。在二分中:
(1)构造容量网络,以0点为源点,到每头牛的容量为1,以n+1点为汇点,每个挤奶器到汇点的容量为m,当然反过来也可以,因为源点和汇点的流量是相等的(等于c)。对于每头牛和每个挤奶器之间的距离,如果比枚举的距离还大,则容量为0,否则容量为1。
(2)Dinic找出网络最大流,很明显最大流最大是c,当最大流是c的时候是一种答案,但不一定是最优,更新二分上限,如果最大流没达到c,则更新下限。
#include<cstring> #include<string> #include<fstream> #include<iostream> #include<iomanip> #include<cstdio> #include<cctype> #include<algorithm> #include<queue> #include<map> #include<set> #include<vector> #include<stack> #include<ctime> #include<cstdlib> #include<functional> #include<cmath> using namespace std; #define PI acos(-1.0) #define MAXN 50100 #define eps 1e-7 #define INF 0x7FFFFFFF #define seed 131 #define mod 1000000007 #define ll long long #define ull unsigned ll #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 int edge[300][300],customer[300][300]; int vis[300],dist[300][300]; int n,m,k,c; void floyd(){ int i,j,k; for(k=1;k<=n;k++){ for(i=1;i<=n;i++){ for(j=1;j<=n;j++){ if(edge[i][k]!=INF&&edge[k][j]!=INF&&edge[i][k]+edge[k][j]<edge[i][j]) edge[i][j] = edge[i][k] + edge[k][j]; } } } } void build_graph(int minm){ int i,j; memset(customer,0,sizeof(customer)); for(i=1;i<=k;i++) customer[i][n+1] = m; for(i=k+1;i<=n;i++) customer[0][i] = 1; for(i=k+1;i<=n;i++){ for(j=1;j<=k;j++){ if(edge[i][j]<=minm) customer[i][j] = 1; } } } int bfs(){ int i,j; memset(vis,0,sizeof(vis)); memset(dist,0,sizeof(dist)); queue<int>q; q.push(0); vis[0] = 1; while(!q.empty()){ int t = q.front(); q.pop(); for(i=0;i<=n+1;i++){ if(!vis[i]&&customer[t][i]){ vis[i] = 1; dist[t][i] = 1; q.push(i); } } } if(vis[n+1]) return 1; else return 0; } int dfs(int u,int delta){ int i,j,s; if(u==n+1) return delta; s = delta; for(i=0;i<=n+1;i++){ if(dist[u][i]){ int dd = dfs(i,min(customer[u][i],delta)); customer[u][i] -= dd; customer[i][u] += dd; delta -= dd; } } return s - delta; } int main(){ int i,j; while(scanf("%d%d%d",&k,&c,&m)!=EOF){ n = k + c; for(i=1;i<=n;i++){ for(j=1;j<=n;j++){ scanf("%d",&edge[i][j]); if(edge[i][j]==0) edge[i][j] = INF; } } floyd(); int mid, l = 0, r = 10000; int sum; while(l<r){ mid = (l+r)/2; sum = 0; build_graph(mid); while(bfs()) sum += dfs(0,INF); if(sum==c) r = mid; else l = mid + 1; } printf("%d\n",l); } return 0; }
POJ--2112--Optimal Milking【Floyd+Dinic+二分答案】,布布扣,bubuko.com
POJ--2112--Optimal Milking【Floyd+Dinic+二分答案】
原文地址:http://blog.csdn.net/zzzz40/article/details/38456041