标签:
BST即二叉搜索树Binary Search Tree(又叫二叉排序树Binary Sort Tree)。它有以下特点:
BST的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销。
但BST树在经过多次插入与删除后,有可能导致不同的结构:
如上图所示,右边也是一个BST,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用BST还要考虑尽可能让该树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;实际使用的BST都是在原BST的基础上加上平衡算法,即“平衡二叉树”;如何保持BST结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在BST中插入和删除结点的策略。
B-tree树即B树,B即Balanced,平衡的意思。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。而事实上是,B-tree就是指的B树。特此说明。
B-树是一种多路搜索树(并不一定是二叉的),它定义如下:
当M=3时有如下示例:
B树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点。
B树有以下特性:
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:
其中,M为设定的非叶子结点最多子树个数,N为关键字总数;所以B树的性能总是等价于二分查找(与M值无关),也就没有BST平衡的问题;由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并。
B+树是B-树的变体,也是一种多路搜索树。B+ 树是一个n叉树,每个节点通常有多个孩子,一棵B+树包含根节点、内部节点和叶子节点。根节点可能是一个叶子节点,也可能是一个包含两个或两个以上孩子节点的节点。B+树的定义如下:
当M=3时有如下示例:
B+树有以下特性:
一棵m阶的B+树和m阶的B-树的差异在于:
B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针。
当M=3时有如下示例:
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父
结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针。
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针。
所以,B*树分配新结点的概率比B+树要低,空间使用率更高。
BST:每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点。
B(B-)树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中。
B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中。
B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3。
参考:http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
标签:
原文地址:http://www.cnblogs.com/Eason-S/p/5809577.html