码迷,mamicode.com
首页 > 其他好文 > 详细

CodeForces 707C Pythagorean Triples

时间:2016-08-27 11:24:13      阅读:110      评论:0      收藏:0      [点我收藏+]

标签:

数学,构造。

这题比较有意思,一开始没发现结论写了一个最坏复杂度为$O({10^9})$暴力居然能$AC$,正因为如此,我才发现了规律。

一开始是这么想的:

先假设$n$为直角边,设斜边长度为$c$,另一条直角边长度为$b$,因此有${c^2} - {b^2} = {n^2}$。

左边因式分解得到:$(c + b)(c - b) = {n^2}$。我们记$A = c + b$,$B=c-b$。那么:$c = \frac{{A + B}}{2}$,$b = \frac{{A - B}}{2}$。

因此,如果我们能找到${n^2}$的两个因子$A$和$B$,使得$A×B={n^2}$,并且使得$c$和$b$都是不为$0$的整数,那么就找到了在$n$作为直角边的情况下的答案。

如果上述条件下没有找到解,那么就设$n$作为斜边,设两个直角边分别为$a$和$b$,然后暴力枚举$a$,判断${n^2} - {a^2}$是否为平方数,如果是,那么就找到解了。

这样的方法看似会超时,实际上居然能$AC$......然后我把后半部分$n$作为斜边的删了,也照样能$AC$。

然后我就开始思考$n$作为直角边时候有什么规律在....后来发现了。

我们再来观察$n$作为直角边时候的答案:$c = \frac{{A + B}}{2}$,$b = \frac{{A - B}}{2}$。

如果${n^2}$是奇数,那么我们假设$B=1$,$A={n^2}$,这样构造就能保证$c$和$b$都是整数啦。

如果${n^2}$是偶数,那么我们假设$B=2$,$A = \frac{{{n^2}}}{2}$,这样构造也能保证$c$和$b$都是整数。

也就是说一开始写的暴力方法,在枚举到$B=2$的时候就找到解了,因此能过......

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-8;
void File()
{
    freopen("D:\\in.txt","r",stdin);
    freopen("D:\\out.txt","w",stdout);
}

LL n,ans1,ans2;

int main()
{
    scanf("%lld",&n);
    if(n==1||n==2) printf("-1\n");
    else
    {
        if(n*n%2==1) ans1=(n*n+1)/2, ans2=(n*n-1)/2;
        else ans1=(n*n/2+2)/2, ans2=((n*n/2-2))/2;
        printf("%lld %lld\n",ans1,ans2);
    }
    return 0;
}

 

CodeForces 707C Pythagorean Triples

标签:

原文地址:http://www.cnblogs.com/zufezzt/p/5812472.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!