码迷,mamicode.com
首页 > 其他好文 > 详细

算法学习 - 平衡二叉查找树实现(AVL树)

时间:2014-08-10 01:46:39      阅读:238      评论:0      收藏:0      [点我收藏+]

标签:平衡二叉查找树   算法   c++   

平衡二叉查找树

平衡二叉查找树是很早出现的平衡树,因为所有子树的高度差不超过1,所以操作平均为O(logN)。
平衡二叉查找树和BS树很像,插入和删除操作也基本一样,但是每个节点多了一个高度的信息,在每次插入之后都要更新树的每个节点的高度,发现不平衡之后就要进行旋转。

单旋转

单旋转是碰到左左或者右右的情况下所使用的方法。
例如:


  3
         2
                1

这种情况就需要旋转,因为3是根节点,它的左子树高度为0,右子树高度为2,相差超过1了,所以要进行旋转,而这是右右的情况,所以是单旋转。


       2
      /      1   3

这样子旋转过后就可以了~

双旋转

双旋转也很简单,但代码操作会稍微麻烦一点:


  2
         4
    /
   3

遇到这种情况就是双旋转,因为3是在2 4之间的。
旋转过后:


  3
 / 2   4

这样子就可以了。。其实很多时候情况比这个复杂,但是本质都是这样子操作的。

实现代码:

//
//  AVL.h
//  AVL
//
//  Created by Alps on 14-8-7.
//  Copyright (c) 2014年 chen. All rights reserved.
//

#ifndef AVL_AVL_h
#define AVL_AVL_h

#define ElementType int

struct TreeNode;
typedef TreeNode* AVL;
typedef TreeNode* Position;

Position Find(ElementType key, AVL A);
Position FindMax(AVL A);
Position FindMin(AVL A);

AVL Insert(ElementType key, AVL A);
AVL Delete(ElementType key, AVL A);

struct TreeNode{
    ElementType element;
    AVL left;
    AVL right;
    int height;
};


#endif

上面的代码是AVL.h文件。

//
//  main.cpp
//  AVL
//
//  Created by Alps on 14-8-7.
//  Copyright (c) 2014年 chen. All rights reserved.
//

#include <iostream>
#include "AVL.h"

int Height(AVL A){//求节点高度
    if (A == NULL) {
        return -1;
    }else{
        return A->height;
    }
}
int MAX(int a, int b){//返回两数中的大数
    return a>b?a:b;
}

AVL SingleRotateWithRight(AVL A){//右单旋转
    AVL tmp = A->right;
    A->right = tmp->left;
    tmp->left = A;
    A->height = MAX(Height(A->left), Height(A->right))+1;
    tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
    return tmp;
}

AVL DoubleRotateWithRight(AVL A){//右双旋转
    AVL tmp = A->right;
    AVL tmp1 = tmp->left;
    tmp->left = tmp1->right;
    A->right = tmp1->left;
    tmp1->right = tmp;
    tmp1->left = A;
    tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
    A->height = MAX(Height(A->left), Height(A->right))+1;
    tmp1->height = MAX(Height(tmp1->left), Height(tmp1->right))+1;
    return tmp1;
}

AVL SingleRotateWithLeft(AVL A){//左单旋转
    AVL tmp = A->left;
    A->left = tmp->right;
    tmp->right = A;
    A->height = MAX(Height(A->left), Height(A->right))+1;
    tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
    return tmp;
}

AVL DoubleRotateWithLeft(AVL A){//左双旋转
    AVL tmp = A->left;
    AVL tmp1 = tmp->right;
    tmp->right = tmp1->left;
    A->left = tmp1->right;
    tmp1->left = tmp;
    tmp1->right = A;
    tmp->height = MAX(Height(tmp->left), Height(tmp->right))+1;
    A->height = MAX(Height(A->left), Height(A->right))+1;
    tmp1->height = MAX(Height(tmp1->left), Height(tmp1->right))+1;
    return tmp1;
}



AVL Insert(ElementType key, AVL A){//插入元素
    if (A == NULL) {
        A = (AVL)malloc(sizeof(struct TreeNode));
        A->element = key;
        A->height = 0;
        A->right = NULL;
        A->left = NULL;
//        return A;
    }else{
        if (key > A->element) {//如果大于当前节点,向右子树插入
            A->right = Insert(key, A->right);
            if (Height(A->right) - Height(A->left) == 2) {
                if (key > A->right->element) {//如果插入到节点的右子树的右方,右单旋转
                    A = SingleRotateWithRight(A);
                }else{
                    A = DoubleRotateWithRight(A);//插入到当前节点右子树的左方,右双旋转
                }
            }
            
        }else
            if (key < A->element) {
               A->left = Insert(key, A->left);
                if (Height(A->left) - Height(A->right) == 2) {
                    if (key < A->left->element) {//左单旋转
                        A = SingleRotateWithLeft(A);
                    }else{
                        A = DoubleRotateWithLeft(A);
                    }
                }
            }
    }
    
    A->height = MAX(Height(A->left), Height(A->right))+1;
    return A;
}

Position FindMax(AVL A){//找到当前树的最大值
    AVL tmp = A;
    if (A == NULL) {
        return NULL;
    }else{
        while (tmp->right != NULL) {
            tmp = tmp->right;
        }
    }
    return tmp;
}

Position FindMin(AVL A){//找到当前树的最小值
    AVL tmp = A;
    if (A == NULL) {
        return NULL;
    }else{
        while (tmp->left != NULL) {
            tmp = tmp->left;
        }
    }
    return tmp;
}

Position Find(ElementType key,AVL A){//查找节点,返回节点指针
    AVL tmp = A;
    if (A == NULL) {
        return NULL;
    }else{
        while (tmp != NULL && tmp->element != key) {
            if (key > tmp->element) {
                tmp = tmp->right;
            }else{
                tmp = tmp->left;
            }
        }
    }
    return tmp;
}

AVL Delete(ElementType key, AVL A){//删除节点
    
    if (A == NULL || Find(key, A) == NULL) {
        return NULL;
    }else{
        
        if (key == A->element) {//如果找到了要删除的节点
            AVL tmp;
            if (A->left && A->right) {//如果要删除的节点有左右子树
                tmp = FindMin(A->left);//用当前节点左子树的最小值替换
                A->element = tmp->element;
                A->left = Delete(A->element, A->left);//删掉左子树最小值节点
            }else{
                tmp = A;
                if (A->left) {
                    A = A->left;//<span style="font-family: Arial, Helvetica, sans-serif;">如果只存在左子树,直接返回它的左子树节点</span>

                }else{
                    if (A->right) {
                        A = A->right; //<span style="font-family: Arial, Helvetica, sans-serif;">如果只存在右子树,直接返回它的右子树节点</span>

                    }else{
                        A = NULL;//删除的是叶子节点,直接赋值为NULL
                    }
                }
                free(tmp);
                tmp = NULL;
                return A;//返回删除后的节点
            }
        }else{
            if (key > A->element) {//如果大于,去右子树
                A->right = Delete(key, A->right);
                if (Height(A->left) - Height(A->right) == 2) {
                    if (A->left->right != NULL && (Height(A->left->right) > Height(A->left->left))) {//如果当前节点不平衡,且节点左孩子存在右孩子,双旋转
                        A = DoubleRotateWithLeft(A);
                    }else{
                        A = SingleRotateWithLeft(A);//否则单旋转
                    }
                }
//                A->height = MAX(Height(A->left), Height(A->right));
            }else{
                if (key < A->element) {
                    A->left = Delete(key, A->left);
                    if (Height(A->right) - Height(A->left) == 2) {
                        if (A->right->left != NULL && (Height(A->right->left) > Height(A->right->right))) {//
                            A = DoubleRotateWithRight(A);
                        }else{
                            A = SingleRotateWithRight(A);
                        }
                    }
//                    A->height = MAX(Height(A->left), Height(A->right));
                }
            }
        }
    }
    A->height = MAX(Height(A->left), Height(A->right))+1;
    return A;
}


int main(int argc, const char * argv[])
{
    AVL A = NULL;
    A = Insert(3, A);
    printf("%d %d\n",A->element,A->height);
    A = Insert(2, A);
    printf("%d %d\n",A->left->element,A->height);
    A = Insert(1, A);
    printf("%d %d\n",A->left->element,A->left->height);
    A = Insert(4, A);
    A = Insert(5, A);
    printf("%d %d\n",A->right->element,A->right->height);
    A = Insert(6, A);
    printf("%d %d\n",A->element,A->height);
    A = Insert(7, A);
    A = Insert(16, A);
    A = Insert(15, A);
    printf("%d %d\n",A->right->element,A->right->height);
    A = Insert(14, A);
    printf("%d %d\n",A->right->element,A->right->height);
    A = Delete(16, A);
    printf("%d %d\n",A->right->element,A->right->height);
    A = Delete(6, A);
    A = Delete(5, A);
    printf("%d %d\n",A->right->element,A->right->height);
    return 0;
}


算法学习 - 平衡二叉查找树实现(AVL树),布布扣,bubuko.com

算法学习 - 平衡二叉查找树实现(AVL树)

标签:平衡二叉查找树   算法   c++   

原文地址:http://blog.csdn.net/alps1992/article/details/38464793

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!