标签:
10870 Recurrences
Consider recurrent functions of the following form:
f(n) = a1f(n ?? 1) + a2f(n ?? 2) + a3f(n ?? 3) + : : : + adf(n ?? d); for n > d;
where a1, a2, …, ad are arbitrary constants.
A famous example is the Fibonacci sequence, defined as: f(1) = 1, f(2) = 1, f(n) = f(n ?? 1) +
f(n ?? 2). Here d = 2, a1 = 1, a2 = 1.
Every such function is completely described by specifying d (which is called the order of recurrence),
values of d coefficients: a1, a2, …, ad, and values of f(1), f(2), …, f(d). You’ll be given these numbers,
and two integers n and m. Your program’s job is to compute f(n) modulo m.
Input
Input file contains several test cases. Each test case begins with three integers: d, n, m, followed by
two sets of d non-negative integers. The first set contains coefficients: a1, a2, …, ad. The second set
gives values of f(1), f(2), …, f(d).
You can assume that: 1 d 15, 1 n 231 ?? 1, 1 m 46340. All numbers in the input will
fit in signed 32-bit integer.
Input is terminated by line containing three zeroes instead of d, n, m. Two consecutive test cases
are separated by a blank line.
Output
For each test case, print the value of f(n)( modm) on a separate line. It must be a non-negative integer,
less than m.
Sample Input
1 1 100
21
2 10 100
1 1
1 1
3 2147483647 12345
12345678 0 12345
1 2 3
0 0 0
Sample Output
1
55
423
题意:
考虑线性递推关系:f(n)=a1*f(n-1)+a2*f(n-2)+…+ad*f(n-d)。给出d,n,m,a1,a2,…,ad,f(1),f(2),…,f(d),计算f(n)除以m的余数。
分析:
构造递推关系式:Fn=Fn-1 * A。
其中,Fn=(f(n-d+1),f(n-d+2),…,f(n))
而矩阵A将由以下代码进行构造:
int x = 2,y = 1; for(i = 2 ; i <= d ; i++) A.Mat[x][y] = 1,x++,y++;
for(i = 1 ; i <= d ; i++) A.Mat[i][d] = D[d - i + 1];
1 #include<stdio.h> 2 #include<string.h> 3 typedef struct{ 4 long long Mat[16][16]; 5 }MAT; 6 long long n,MOD,d; 7 MAT mul(MAT a,MAT b){ 8 MAT c; 9 memset(c.Mat,0,sizeof(c.Mat)); 10 for(int i = 1 ; i <= d ; i++) 11 for(int j = 1 ; j <= d ; j++) 12 for(int k = 1 ; k <= d ; k++) 13 c.Mat[i][j] = (c.Mat[i][j] + a.Mat[i][k] * b.Mat[k][j]) % MOD; 14 return c; 15 } 16 MAT Quick_pow(MAT a,long long b){ 17 MAT c; memset(c.Mat,0,sizeof(c.Mat)); 18 for(int i = 1 ; i <= d ; i++) c.Mat[i][i] = 1; 19 while(b){ 20 if(b & 1) c = mul(c,a); 21 a = mul(a,a); 22 b >>= 1; 23 } 24 return c; 25 } 26 int main(){ 27 long long D[16],F[16],i; 28 MAT A; 29 while(~scanf("%lld %lld %lld",&d,&n,&MOD) && d + n + MOD){ 30 for(i = 1 ; i <= d ; i++) { 31 scanf("%lld",&D[i]); 32 D[i] %= MOD; 33 } 34 for(i = 1 ; i <= d ; i ++) { 35 scanf("%lld",&F[i]); 36 F[i] %= MOD; 37 } 38 if(n <= d){ 39 printf("%lld\n",F[n]); 40 continue; 41 } 42 memset(A.Mat,0,sizeof(A.Mat)); 43 int x = 2,y = 1; 44 for(i = 2 ; i <= d ; i++) A.Mat[x][y] = 1,x++,y++; 45 for(i = 1 ; i <= d ; i++) A.Mat[i][d] = D[d - i + 1]; 46 A = Quick_pow(A,n - 1); 47 long long Ans = 0; 48 for(i = 1 ; i <= d ; i++){ 49 Ans += F[i] * A.Mat[i][1]; 50 Ans %= MOD; 51 } 52 printf("%lld\n",Ans); 53 } 54 return 0; 55 }
标签:
原文地址:http://www.cnblogs.com/cyb123456/p/5824305.html