码迷,mamicode.com
首页 > 其他好文 > 详细

FOJ有奖月赛-2016年8月(daxia专场之过四题方有奖)

时间:2016-08-31 13:46:33      阅读:164      评论:0      收藏:0      [点我收藏+]

标签:

6/7

这里简单写个题解,由于源代码无法查看,所以过了的题目的代码就不贴了。。。。

 

题A Problem A Daxia & Wzc‘s problem

题意:略

题解:这个东西显然推公式,最后推得的一个组合数学的公式与第一项和公差有关(具体公式隔太久不记得了,囧)。然后注意到这个m只有一千,虽然这个i很大,但是C(a,b)的运算次数显然是由a和b较小的一个决定,所以可以优化到算一个组合数的复杂度是min(m,i)。

 

题B Problem B Daxia & Yayamao‘s problem

题意:略

题解:这是一个斜率相关问题,比赛的时候没有做出来,然而赛后的也推了超久的(人太渣没办法),我是参考NOI2007的一道题:cash来学的里面的斜率相关问题。这里简单地解释一下:求的是y = a * x + b,(所有的(a,b)已知),变形一下得:b = -x * a + y,这是一条直线,(a,b)是已知的点,给定-x为斜率,求一个最大的斜率,画图可以发现所有有效的点形成一个“上凸包”,只有凸包上的点才是“候选点”,也就是给定一个斜率,我们可以找到最接近的斜率上面的一个点就是答案。这个过程有两种做法,第一种是二分,第二种是三分。二分是二分斜率,然后查找最接近的大于-x的斜率,三分是三分点,把每个点带入对于每个x一定是形成二次函数的样子。两者都可以,要说优劣,只能说三分比较好些,直接求一个凸包,然后三分一下就可以了,二分可能还有误差问题。

 

技术分享
 1 /*zhen hao*/
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <queue>
 6 #include <vector>
 7 #include <string>
 8 #include <stack>
 9 #include <set>
10 #include <map>
11 #include <iostream>
12 #include <algorithm>
13 using namespace std;
14 
15 #define lson l, m, rt*2
16 #define rson m + 1, r, rt*2+1
17 #define xx first
18 #define yy second
19 
20 typedef pair<int,int> pii;
21 typedef long long LL;
22 typedef unsigned long long ULL;
23 
24 const int N = 1e5 + 10, inf = 1 << 30;
25 
26 struct Point {
27   LL a, b;
28   Point(){}
29   Point(LL a, LL b) : a(a), b(b) {}
30   bool operator < (const Point& o) const {
31     return a < o.a || (a == o.a && b < o.b);
32   }
33   Point operator - (const Point& o) const {
34     return Point(a - o.a, b - o.b);
35   }
36   Point operator + (const Point& o) const {
37     return Point(a + o.a, b + o.b);
38   }
39 } P[N], ch[N];
40 
41 LL cross(Point A, Point B) {
42   return A.a * B.b - A.b * B.a;
43 }
44 
45 int convex(Point *P, int n, Point *ch) {
46   sort(P, P + n);
47   int m = 0;
48   for (int i = 0; i < n; i++) {
49     while (m > 1 && cross(P[i] - ch[m - 2], ch[m - 1] - ch[m - 2]) <= 0) m--;
50     ch[m++] = P[i];
51   }
52   return m;
53 }
54 
55 struct Node {
56   int x, id;
57   Node(int x=0, int id=0) : x(x), id(id) {}
58 } line[N];
59 
60 LL get(Point A, Point B) {
61   double x = 1.0 * (A.b - B.b) / (A.a - B.a);
62   return (LL)ceil(x);
63 }
64 
65 bool cmp(Node A, Node B) {
66   return A.x < B.x;
67 }
68 
69 int main() {
70 //  freopen("case.in", "r", stdin);
71   int n, m;
72   while (~scanf("%d%d", &n, &m)) {
73     for (int i = 0; i < n; i++) scanf("%I64d%I64d", &P[i].a, &P[i].b);
74     int nn = convex(P, n, ch);
75 //    for (int i = 0; i < nn; i++) cout << ch[i].a << ‘ ‘ << ch[i].b << endl;
76     int cnt = 0;
77     for (int i = nn - 1; i >= 0; i--) {
78       if (i == nn - 1) line[cnt++] = Node(-inf, i);
79       else line[cnt++] = Node(get(ch[i], ch[i + 1]), i);
80     }
81 //    sort(line, line + nn, cmp);
82     for (int i = 0; i < nn; i++) {
83 //      cout << line[i].x << ‘ ‘ << line[i].id << endl;
84     }
85     for (int i = 0; i < m; i++) {
86       LL x;
87       scanf("%I64d", &x);
88       int p = upper_bound(line, line + nn, Node(-x, 0), cmp) - line - 1;
89 //      cout << line[p].id << endl;
90       printf("%I64d\n", ch[line[p].id].a * x + ch[line[p].id].b);
91     }
92   }
93   return 0;
94 }
代码君(二分)

 

技术分享
/*zhen hao*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <string>
#include <stack>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
using namespace std;

#define lson l, m, rt*2
#define rson m + 1, r, rt*2+1
#define xx first
#define yy second

typedef pair<int,int> pii;
typedef long long LL;
typedef unsigned long long ULL;

const int N = 1e5 + 10, inf = 1 << 30;

struct Point {
  LL a, b;
  Point(){}
  Point(LL a, LL b) : a(a), b(b) {}
  bool operator < (const Point& o) const {
    return a < o.a || (a == o.a && b < o.b);
  }
  Point operator - (const Point& o) const {
    return Point(a - o.a, b - o.b);
  }
  Point operator + (const Point& o) const {
    return Point(a + o.a, b + o.b);
  }
} P[N], ch[N];

LL cross(Point A, Point B) {
  return A.a * B.b - A.b * B.a;
}

int convex(Point *P, int n, Point *ch) {
  sort(P, P + n);
  int m = 0;
  for (int i = 0; i < n; i++) {
    while (m > 1 && cross(P[i] - ch[m - 2], ch[m - 1] - ch[m - 2]) <= 0) m--;
    ch[m++] = P[i];
  }
  return m;
}

struct Node {
  int x, id;
  Node(int x=0, int id=0) : x(x), id(id) {}
} line[N];

LL get(Point A, Point B) {
  double x = 1.0 * (A.b - B.b) / (A.a - B.a);
  return (LL)ceil(x);
}

bool cmp(Node A, Node B) {
  return A.x < B.x;
}

LL cal(Point A, LL x) {
  return A.a * x + A.b;
}

int main() {
//  freopen("case.in", "r", stdin);
  int n, m;
  while (~scanf("%d%d", &n, &m)) {
    for (int i = 0; i < n; i++) scanf("%I64d%I64d", &P[i].a, &P[i].b);
    int nn = convex(P, n, ch);
    for (int i = 0; i < m; i++) {
      LL x;
      scanf("%I64d", &x);
      int L = 0, R = nn - 1;
      while (R - L > 2) {
        int m1 = L + (R - L) / 3;
        int m2 = R - (R - L) / 3;
        if (cal(ch[m1], x) < cal(ch[m2], x)) L = m1; else R = m2;
//        cout << L << ‘ ‘ << R << endl;
      }
      LL ans = -(1LL << 60);
      for (int i = L; i <= R; i++) ans = max(ans, cal(ch[i], x));
      printf("%I64d\n", ans);
    }
  }
  return 0;
}
代码君(三分)

 

题C Problem C Daxia & Suneast‘s problem

题意:略

题解:首先要知道这个SG的规律,白书原题,也可以自己暴力打表发现。然后就是用线段树维护每个点的SG值,区间查询,单点更新即可,实际上是一道水题╮(╯▽╰)╭。

 

题D Problem D Daxia like YuGiOh

题意:略

题解:没做出来,也没看题,感觉有点难就搁到了现在。。。。

 

题E Problem E Daxia like acute triangle

题意:略

题解:对于一个圆,先从0度到360度按照逆时针编个号,然后排完序之后对于每个点考虑半圆,从半圆上任意选两个点,方案数为C(n,2),然后一直做到最后一个点就是钝角和直角三角形的数量,最后用C(n,3)减去即可。是道水题,然后比赛的时候脑抽了,整个队在纠结题意。。。。。。

 

技术分享
 1 /*zhen hao*/
 2 #include <cstdio>
 3 #include <iostream>
 4 #include <algorithm>
 5 using namespace std;
 6 
 7 #define lson l, m, rt*2
 8 #define rson m + 1, r, rt*2+1
 9 #define xx first
10 #define yy second
11 
12 typedef pair<int,int> pii;
13 typedef long long ll;
14 typedef unsigned long long ull;
15 
16 char s[10];
17 int n, r;
18 
19 int get_id(int x, int y) {
20   if (x == r || (x > 0 && y > 0)) return r - x;
21   else if (x <= 0 && y > 0) return r - x;
22   else if (x < 0 && y <= 0) return 2 * r + r + x;
23   else return 3 * r + x;
24 }
25 
26 const int N = 4e4 + 10;
27 
28 int id[N];
29 
30 int main() {
31 //  freopen("case.in", "r", stdin);
32   while (~scanf("%d%d", &n, &r)) {
33     for (int i = 0; i < n; i++) {
34       int x, y;
35       scanf("%d%s", &x, s);
36       if (x == r || x == -r) y = 0;
37       else if (s[1] == >) y = 1;
38       else y = -1;
39       id[i] = get_id(x, y);
40 //      cout << id[i] << endl;
41     }
42     sort(id, id + n);
43     for (int i = 0; i < n; i++) id[i + n] = id[i] + 4 * r;
44     ll res = 1LL * n * (n - 1) * (n - 2) / 6;
45     for (int i = 0; i < n; i++) {
46       int p = lower_bound(id, id + n * 2, id[i] + 2 * r) - id;
47       if (id[p] == id[i] + 2 * r) p++;
48       ll len = p - i - 1;
49       res -= len * (len - 1) / 2;
50     }
51     cout << res << endl;
52   }
53   return 0;
54 }
代码君

 

题F Problem F Daxia like uber

题意:略

题解:好像是最短路dij+枚举,队友秒的。

 

题G Problem G Daxia want to buy house

题意:略

题解:模拟题,读懂题意之后好像要利用指数的特点来优化误差,我语文不行,应该做不出这道题,又是队友秒了。

FOJ有奖月赛-2016年8月(daxia专场之过四题方有奖)

标签:

原文地址:http://www.cnblogs.com/zhenhao1/p/5825406.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!