标签:style blog http color os io art ar
题目地址:Couple doubi
题目大意:
桌上有K个球,有一公式Every ball has a value and the value of ith (i=1,2,...,k) ball is 1^i+2^i+...+(p-1)^i (mod p) 。p是一个素数(3.5.7....)。doubinan和doubixp,每人依次取一个球计算其球的value的总和sum比较谁赢。nan先取如果赢输出YES否则NO。
解题思路:
找规律,把p为3,k为1-10的胜负情况罗列出来和p为5,k为1-10,和p为7,k为1-10。
会发现p=3的结果(0202020202)p=5(00040004)p=7(五个0和一个数)。所以把yes和no写出来,规律很容易发现
假设p=7,K<=6的胜负情况都是NO,K>=7的胜负情况是7个一组的循环。
代码:
1 #include <algorithm> 2 #include <iostream> 3 #include <sstream> 4 #include <cstdlib> 5 #include <cstring> 6 #include <cstdio> 7 #include <string> 8 #include <bitset> 9 #include <vector> 10 #include <queue> 11 #include <stack> 12 #include <cmath> 13 #include <list> 14 //#include <map> 15 #include <set> 16 using namespace std; 17 /***************************************/ 18 #define ll long long 19 #define int64 __int64 20 #define PI 3.1415927 21 /***************************************/ 22 const int INF = 0x7f7f7f7f; 23 const double eps = 1e-8; 24 const double PIE=acos(-1.0); 25 const int d1x[]= {0,-1,0,1}; 26 const int d1y[]= {-1,0,1,0}; 27 const int d2x[]= {0,-1,0,1}; 28 const int d2y[]= {1,0,-1,0}; 29 const int fx[]= {-1,-1,-1,0,0,1,1,1}; 30 const int fy[]= {-1,0,1,-1,1,-1,0,1}; 31 const int dirx[]= {-1,1,-2,2,-2,2,-1,1}; 32 const int diry[]= {-2,-2,-1,-1,1,1,2,2}; 33 /*vector <int>map[N];map[a].push_back(b);int len=map[v].size();*/ 34 /***************************************/ 35 void openfile() 36 { 37 freopen("data.in","rb",stdin); 38 freopen("data.out","wb",stdout); 39 } 40 priority_queue<int> qi1; 41 priority_queue<int, vector<int>, greater<int> >qi2; 42 /**********************华丽丽的分割线,以上为模板部分*****************/ 43 44 int main() 45 { 46 int k,p; 47 while(scanf("%d%d",&k,&p)!=EOF) 48 { 49 int sum1=p-2,sum2; 50 if(k<=sum1) 51 { 52 printf("NO\n"); 53 } 54 else 55 { 56 sum2=k/(sum1+1); 57 if (sum2%2) 58 printf("YES\n"); 59 else 60 printf("NO\n"); 61 } 62 } 63 return 0; 64 }
HDU4861(Couple doubi),布布扣,bubuko.com
标签:style blog http color os io art ar
原文地址:http://www.cnblogs.com/ZhaoPengkinghold/p/3902922.html