标签:
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋
times.
You may assume that the array is non-empty and the majority element always exist in the array.
给定一个长度为n的数组,寻找其中的“众数”。众数是指出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的并且数组中的众数永远存在。(判断存不存在,可以计算最后一次得到的“众数”是否是众数)
“投票算法”,设定两个变量candidate和count。candidate保存当前可能的候选众数,count保存该候选众数的出现次数。
遍历数组num。
如果当前的数字e与候选众数candidate相同,则将计数count + 1
否则,如果当前的候选众数candidate为空,或者count为0,则将候选众数candidate的值置为e,并将计数count置为1。
否则,将计数count - 1
最终留下的候选众数candidate即为最终答案。
以上算法时间复杂度为O(n),空间复杂度为O(1)
1 class Solution { 2 public: 3 int majorityElement(vector<int>& nums) { 4 int num = nums.size(); 5 int major = nums[0], cnt = 1; 6 for(int i = 1; i < num; i++){ 7 if(nums[i] == major) 8 cnt++; 9 else { 10 if(cnt == 0){ 11 major = nums[i]; 12 cnt = 1; 13 } else { 14 cnt--; 15 } 16 } 17 } 18 return major; 19 } 20 };
时间复杂度: O(n2) — 蛮力法: 依次检查每一个元素是否为众数
时间复杂度: O(n), 空间复杂度: O(n) — 哈希表: 维护一个每一个元素出现次数的哈希表, 然后找到出现次数最多的元素
时间复杂度: O(n log n) — 排序: 在排序后找出连续重复出现次数最多的元素
平均时间复杂度: O(n), 最坏复杂度: 无穷大 — 随机算法: 随机选取一个元素计算其是否为众数. 如果不是, 就重复上一步骤直到找到为止。 由于选出众数的概率 > 1 / 2, 因此期望的尝试次数 < 2
时间复杂度: O(n log n) — 分治法: 将数组拆成2半, 然后找出前一半的众数A和后一半的众数B。则全局众数要么是A要么是B。 如果 A == B, 则它自然而然就是全局众数。 如果不是, 则A和B都是候选众数, 则至多只需要检查这两个元素的出现次数即可。 时间复杂度, T(n) = T(n/2) + 2n = O(n log n).
时间复杂度: O(n) — Moore投票算法: 我们维护一个当前的候选众数和一个初始为0的计数器。遍历数组时,我们看当前的元素x:
时间复杂度: O(n) — 位操作法: 我们需要32次迭代, 每一次计算所有n个数的第i位的1的个数。由于众数一定存在,那么或者1的个数 > 0的个数 或者反过来(但绝不会相同)。 众数的第i位一定是计数较多数字。
标签:
原文地址:http://www.cnblogs.com/qinduanyinghua/p/5827917.html