码迷,mamicode.com
首页 > 其他好文 > 详细

[转]二重积分换元法的一种简单证明

时间:2014-08-10 18:31:30      阅读:370      评论:0      收藏:0      [点我收藏+]

标签:http   strong   问题   .net   ef   file   on   简单   

10.3二重积分的换元积分法

在一元函数定积分的计算中,我们常常进行换元,以达删繁就简的目的,当然,二重积分也有换元积分的问题。

首先让我们回顾一下前面曾讨论的一个事实。

设换元函数 bubuko.com,布布扣,视其为一个由定义域bubuko.com,布布扣bubuko.com,布布扣的映射.点bubuko.com,布布扣的象点为bubuko.com,布布扣,点x的象点为bubuko.com,布布扣,记

bubuko.com,布布扣

则由bubuko.com,布布扣到点bubuko.com,布布扣的线段长为bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣的线段长为bubuko.com,布布扣,称bubuko.com,布布扣为映射bubuko.com,布布扣在点bubuko.com,布布扣到点bubuko.com,布布扣的平均伸缩率。若bubuko.com,布布扣在点bubuko.com,布布扣处可导,则

bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣是映射bubuko.com,布布扣在点bubuko.com,布布扣处的伸缩率。

对于由平面区域bubuko.com,布布扣bubuko.com,布布扣的映射bubuko.com,布布扣我们有如下结论:

引理 若变换bubuko.com,布布扣在开区域bubuko.com,布布扣存在连续偏导数,且雅可比行列式bubuko.com,布布扣bubuko.com,布布扣。变换将bubuko.com,布布扣平面上开区域变为bubuko.com,布布扣平面上开区域bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,其象点为bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,则包含点bubuko.com,布布扣的面积微元bubuko.com,布布扣及与之相对应的包含点bubuko.com,布布扣的面积微元bubuko.com,布布扣之比是bubuko.com,布布扣,即bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣

下面给出引理3.1的说明,严格的证明从略。由图3。1所示,在bubuko.com,布布扣内作以点bubuko.com,布布扣为顶点的矩形bubuko.com,布布扣,而变换bubuko.com,布布扣,将bubuko.com,布布扣分别变为bubuko.com,布布扣平面上的四点bubuko.com,布布扣,矩形bubuko.com,布布扣变为曲边四边形bubuko.com,布布扣。而曲边四边形bubuko.com,布布扣的四个顶点的坐标由泰勒公式表示为bubuko.com,布布扣bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣

忽略高阶无穷小bubuko.com,布布扣bubuko.com,布布扣,曲边四边形bubuko.com,布布扣近似平行四边形,其面积

bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣其中bubuko.com,布布扣是矩形bubuko.com,布布扣的面积。于是bubuko.com,布布扣bubuko.com,布布扣

在引理条件下,函数组bubuko.com,布布扣,在bubuko.com,布布扣的某邻域bubuko.com,布布扣具有连续的反函数组bubuko.com,布布扣bubuko.com,布布扣

再根据9.1节性质1.2有bubuko.com,布布扣=bubuko.com,布布扣于是bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣

定理3.1  若函数bubuko.com,布布扣在有界闭区域bubuko.com,布布扣连续,函数组将bubuko.com,布布扣平面上区域bubuko.com,布布扣一一对应地变换为bubuko.com,布布扣平面上区域bubuko.com,布布扣,且该函数组在bubuko.com,布布扣存在连续的偏导数,,则

bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 用任意分法bubuko.com,布布扣将区域bubuko.com,布布扣分成bubuko.com,布布扣个小区域bubuko.com,布布扣,其面积分别记为bubuko.com,布布扣;变换bubuko.com,布布扣,将分法bubuko.com,布布扣变为bubuko.com,布布扣上的分法bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣分割成bubuko.com,布布扣个小区域bubuko.com,布布扣,其面积分别记为bubuko.com,布布扣,由引理可知,对于bubuko.com,布布扣bubuko.com,布布扣,有

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣于是bubuko.com,布布扣,在bubuko.com,布布扣上对应唯一点bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,于是bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

在定理3.2的条件下,变换bubuko.com,布布扣在有界闭区域bubuko.com,布布扣上存在连续的反函数组bubuko.com,布布扣,他们必在bubuko.com,布布扣上一致连续,所以当bubuko.com,布布扣时,必有又注意到函数bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣的连续性,因而他在bubuko.com,布布扣上可积,于是在bubuko.com,布布扣中令bubuko.com,布布扣,有bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣完成定理3。2的证明。

在二重积分的计算中,若被积函数为bubuko.com,布布扣的形式,或积分区域为所谓的圆形区域时,通常采用极坐标变换bubuko.com,布布扣它能使前者化简为一元函数bubuko.com,布布扣

bubuko.com,布布扣

后者若为图3.2所示的区域,利用极坐标变换能化为bubuko.com,布布扣平面上的bubuko.com,布布扣型区域。则积分bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

=bubuko.com,布布扣

特别,极点在边界上的扇形区域,即bubuko.com,布布扣,则积分

bubuko.com,布布扣=bubuko.com,布布扣

极点在区域bubuko.com,布布扣的内部,边界线是bubuko.com,布布扣的区域,即bubuko.com,布布扣则积分

bubuko.com,布布扣=bubuko.com,布布扣

bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣例3.1  计算bubuko.com,布布扣

bubuko.com,布布扣  作极坐标变换 bubuko.com,布布扣将圆域D变换为矩形区域,

bubuko.com,布布扣 bubuko.com,布布扣,于是用公式(3.5)得

bubuko.com,布布扣 bubuko.com,布布扣=bubuko.com,布布扣

bubuko.com,布布扣bubuko.com,布布扣 例3.2  计算bubuko.com,布布扣bubuko.com,布布扣,D是由

bubuko.com,布布扣bubuko.com,布布扣所围的区域。

 积分区域如图3.5所示,作极坐标变换,则D化为区域bubuko.com,布布扣,其边界曲线为bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣,于是得

bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣

例3.3 bubuko.com,布布扣其中D是由bubuko.com,布布扣所围成的平面区域

bubuko.com,布布扣

 区域D及bubuko.com,布布扣如图3.6所示,有bubuko.com,布布扣=bubuko.com,布布扣-bubuko.com,布布扣bubuko.com,布布扣=4

在极坐标系下,有bubuko.com,布布扣, 因此bubuko.com,布布扣=bubuko.com,布布扣于是bubuko.com,布布扣=4-bubuko.com,布布扣

例3.4 计算bubuko.com,布布扣,其中D是由曲线bubuko.com,布布扣所围成的有界区域.

由于积分区域D可表示为bubuko.com,布布扣故替换

bubuko.com,布布扣,则积分区域变为bubuko.com,布布扣,在极坐标下

bubuko.com,布布扣

于是

bubuko.com,布布扣

例3.5   计算bubuko.com,布布扣

 由对称性,原积分

bubuko.com,布布扣

bubuko.com,布布扣

其中bubuko.com,布布扣。作广义极坐标变换:bubuko.com,布布扣

bubuko.com,布布扣变换为矩形区域bubuko.com,布布扣(图3.7)

bubuko.com,布布扣

于是

bubuko.com,布布扣

bubuko.com,布布扣

bubuko.com,布布扣

例3.6   求曲线bubuko.com,布布扣bubuko.com,布布扣所围成区域bubuko.com,布布扣的面积

bubuko.com,布布扣

解由二重积分的性质可知,区域的面积

bubuko.com,布布扣

作变换:

bubuko.com,布布扣

则这个变换bubuko.com,布布扣平面上曲线bubuko.com,布布扣变为bubuko.com,布布扣平面

上的曲线bubuko.com,布布扣bubuko.com,布布扣变为bubuko.com,布布扣,于是它将区域bubuko.com,布布扣变为

bubuko.com,布布扣平面上由bubuko.com,布布扣bubuko.com,布布扣所未成的区域bubuko.com,布布扣(图3.8 )。且

bubuko.com,布布扣

于是bubuko.com,布布扣

bubuko.com,布布扣

例3.7   计算bubuko.com,布布扣

  作变换:bubuko.com,布布扣bubuko.com,布布扣,将bubuko.com,布布扣变换为闭圆域bubuko.com,布布扣,且

bubuko.com,布布扣

bubuko.com,布布扣

由对称性

bubuko.com,布布扣

于是bubuko.com,布布扣

bubuko.com,布布扣

例3.8  计算bubuko.com,布布扣bubuko.com,布布扣是由bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣所围成的区域。

 作变换:bubuko.com,布布扣bubuko.com,布布扣,则这个变换将bubuko.com,布布扣变换为bubuko.com,布布扣平面上的正方形区域(图3.9)。由于

bubuko.com,布布扣

bubuko.com,布布扣

故 bubuko.com,布布扣

又注意到bubuko.com,布布扣,于是

bubuko.com,布布扣

bubuko.com,布布扣

[转]二重积分换元法的一种简单证明,布布扣,bubuko.com

[转]二重积分换元法的一种简单证明

标签:http   strong   问题   .net   ef   file   on   简单   

原文地址:http://www.cnblogs.com/freebird92/p/3903111.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!