码迷,mamicode.com
首页 > 其他好文 > 详细

使用cublas 矩阵库函数实现矩阵相乘

时间:2014-08-10 21:15:10      阅读:718      评论:0      收藏:0      [点我收藏+]

标签:des   style   blog   http   color   使用   os   io   

2014-08-10

cublas中执行矩阵乘法运算的函数

首先要注意的是cublas使用的是以列为主的存储方式,和c/c++中的以行为主的方式是不一样的。处理方法可参考下面的注释代码

// SOME PRECAUTIONS:
// IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B,
// WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)!
// The reason is explained as follows:

// CUBLAS library uses column-major storage, but C/C++ use row-major storage.
// When passing the matrix pointer to CUBLAS, the memory layout alters from
// row-major to column-major, which is equivalent to an implict transpose.

// In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication
// C = A * B, we can‘t use the input order like cublasSgemm(A, B)  because of
// implict transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T).
// If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not
// multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C
// is a column-based cublas matrix, which means C(T) in C/C++, we need extra
// transpose code to convert it to a row-based C/C++ matrix.

// To solve the problem, let‘s consider our desired result C, a row-major matrix.
// In cublas format, it is C(T) actually (becuase of the implict transpose).
// C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T)
// happen to be C/C++ matrice B and A (still becuase of the implict transpose)!
// We don‘t need extra transpose code, we only need alter the input order!
//
// CUBLAS provides high-performance matrix multiplication.
// See also:
// V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
// in Proc. 2008 ACM/IEEE Conf. on Superconducting (SC ‘08),
// Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
//

 

 小例子C++中:

 A矩阵:0   3   5                      B矩阵:1   1   1

       0   0   4                             1   1   1

       1   0   0                             1   1   1

现在要求C = A*B

 C++中的结果

C矩阵:8   8   8                      

      4   4   4                                

      1   1   1                               

 

在cublas中:变成以行为主

A矩阵:0   0   1                      B矩阵:1   1   1

      3   0   0                             1   1   1

      5   4   0                             1   1   1

在cublas中求C2=B*A

结果如下:C2在cublas中以列为主

惯性思维,先把结果用行为主存储好理解:

C2矩阵:8   4   1                     

        8   4   1                               

        8   4   1

在cublas实际是一列存储的,结果如下:                               

C2矩阵:8   8   8                     

        4   4   4                               

        1   1   1

此时在cublas中B*A的结果与C++中A*B结果一样,使用cublas时只需改变下参数的位置即可得到想要的结果。

 

cublas<t>gemm()

cublasStatus_t cublasSgemm(cublasHandle_t handle,
                           cublasOperation_t transa, cublasOperation_t transb,
                           intm, intn, intk,
                           const float*alpha,
                           const float*A, intlda,
                           const float*B, intldb,
                           const float*beta,
                           float*C, intldc);
cublasStatus_t cublasDgemm(cublasHandle_t handle,
                           cublasOperation_t transa, cublasOperation_t transb,
                           intm, intn, intk,
                           const double*alpha,
                           const double*A, intlda,
                           const double*B, intldb,
                           const double*beta,
                           double*C, intldc);
cublasStatus_t cublasCgemm(cublasHandle_t handle,
                           cublasOperation_t transa, cublasOperation_t transb,
                           intm, intn, intk,
                           constcuComplex *alpha,
                           constcuComplex *A, intlda,
                           constcuComplex *B, intldb,
                           constcuComplex *beta,
                           cuComplex *C, intldc);
cublasStatus_t cublasZgemm(cublasHandle_t handle,
                           cublasOperation_t transa, cublasOperation_t transb,
                           intm, intn, intk,
                           constcuDoubleComplex *alpha,
                           constcuDoubleComplex *A, intlda,
                           constcuDoubleComplex *B, intldb,
                           constcuDoubleComplex *beta,
                           cuDoubleComplex *C, intldc);

 

参数含义可参考下面的信息:

 

 bubuko.com,布布扣

 bubuko.com,布布扣

 

使用cublas中cublasSgemm实现简单的矩阵相乘代码如下:

头文件:matrix.h

 1 // SOME PRECAUTIONS:
 2 // IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B,
 3 // WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)!
 4 // The reason is explained as follows:
 5 
 6 // CUBLAS library uses column-major storage, but C/C++ use row-major storage.
 7 // When passing the matrix pointer to CUBLAS, the memory layout alters from
 8 // row-major to column-major, which is equivalent to an implict transpose.
 9 
10 // In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication
11 // C = A * B, we can‘t use the input order like cublasSgemm(A, B)  because of
12 // implict transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T).
13 // If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not
14 // multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C
15 // is a column-based cublas matrix, which means C(T) in C/C++, we need extra
16 // transpose code to convert it to a row-based C/C++ matrix.
17 
18 // To solve the problem, let‘s consider our desired result C, a row-major matrix.
19 // In cublas format, it is C(T) actually (becuase of the implict transpose).
20 // C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T)
21 // happen to be C/C++ matrice B and A (still becuase of the implict transpose)!
22 // We don‘t need extra transpose code, we only need alter the input order!
23 //
24 // CUBLAS provides high-performance matrix multiplication.
25 // See also:
26 // V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
27 // in Proc. 2008 ACM/IEEE Conf. on Superconducting (SC ‘08),
28 // Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
29 //
30 
31 #include <stdio.h>
32 #include <stdlib.h>
33 
34 //cuda runtime
35 #include <cuda_runtime.h>
36 #include <cublas_v2.h>
37 
38 
39 //包含的库
40 #pragma comment (lib,"cudart")
41 #pragma comment (lib,"cublas")
42 
43 //使用这个宏就可以很方便的将我们习惯的行为主的数据转化为列为主的数据
44 //#define  IDX2C(i,j,leading) (((j)*(leading))+(i))
45 
46 typedef struct _matrixSize      // Optional Command-line multiplier for matrix sizes
47 {
48     unsigned int uiWA, uiHA, uiWB, uiHB, uiWC, uiHC;
49 } sMatrixSize;
50 
51 cudaError_t matrixMultiply(float *h_C, const float *h_A, const float *h_B,int devID, sMatrixSize &matrix_size);

 

CPP文件:matrix.cpp

  1 #include "matrix.h"
  2 
  3 cudaError_t matrixMultiply(float *h_C, const float *h_A, const float *h_B,int devID, sMatrixSize &matrix_size){
  4     float *dev_A = NULL;
  5     float *dev_B = NULL;
  6     float *dev_C = NULL;
  7     float *h_CUBLAS = NULL;
  8 
  9     cudaDeviceProp devicePro;
 10     cudaError_t cudaStatus;
 11 
 12     cudaStatus = cudaGetDeviceProperties(&devicePro, devID);
 13 
 14     if(cudaStatus != cudaSuccess){
 15         fprintf(stderr,"cudaGetDeviceProperties returned error code %d, line(%d)\n", cudaStatus, __LINE__);
 16         goto Error;
 17     }
 18 
 19     // allocate device memory for matrices dev_A 、 dev_B and dev_C
 20     unsigned int size_A = matrix_size.uiWA * matrix_size.uiHA;
 21     unsigned int mem_size_A = sizeof(float) * size_A;
 22 
 23     unsigned int size_B = matrix_size.uiWB * matrix_size.uiHB;
 24     unsigned int mem_size_B = sizeof(float) * size_B; 
 25 
 26     unsigned int size_C = matrix_size.uiWC * matrix_size.uiHC;
 27     unsigned int mem_size_C = sizeof(float) * size_C;
 28 
 29     //cudaMalloc dev_A
 30     cudaStatus = cudaMalloc( (void**)&dev_A, mem_size_A);
 31     if(cudaStatus != cudaSuccess){
 32         fprintf(stderr, "cudaMalloc dev_A return error code %d, line(%d)\n", cudaStatus, __LINE__);
 33         goto Error;
 34     }
 35 
 36     //cudaMalloc dev_B
 37     cudaStatus = cudaMalloc( (void**)&dev_B, mem_size_B);
 38     if(cudaStatus != cudaSuccess){
 39         fprintf(stderr, "cudaMalloc dev_B return error code %d, line(%d)\n", cudaStatus, __LINE__);
 40         goto Error;
 41     }
 42 
 43     //cudaMalloc dev_C
 44     cudaStatus = cudaMalloc( (void**)&dev_C, mem_size_C);
 45     if(cudaStatus != cudaSuccess){
 46         fprintf(stderr, "cudaMalloc dev_C return error code %d, line(%d)\n", cudaStatus, __LINE__);
 47         goto Error;
 48     }
 49 
 50     // allocate host memory for result matrices h_CUBLAS
 51     h_CUBLAS = (float*)malloc(mem_size_C);
 52     if( h_CUBLAS == NULL && size_C > 0){
 53         fprintf(stderr, "malloc h_CUBLAS error, line(%d)\n",__LINE__);
 54         goto Error;
 55     }
 56 
 57 
 58     /*
 59     copy the host input vector h_A, h_B in host memory 
 60     to the device input vector dev_A, dev_B in device memory
 61     */
 62 
 63     //cudaMemcpy h_A to dev_A
 64     cudaStatus = cudaMemcpy(dev_A, h_A, mem_size_A, cudaMemcpyHostToDevice);
 65     if( cudaStatus != cudaSuccess){
 66         fprintf(stderr,"cudaMemcpy h_A to dev_A return error code %d, line(%d)", cudaStatus, __LINE__);
 67         goto Error;
 68     }
 69 
 70 
 71     //cudaMemcpy h_B to dev_B
 72     cudaStatus = cudaMemcpy(dev_B, h_B, mem_size_B, cudaMemcpyHostToDevice);
 73     if( cudaStatus != cudaSuccess){
 74         fprintf(stderr,"cudaMemcpy h_B to dev_B returned error code %d, line(%d)", cudaStatus, __LINE__);
 75         goto Error;
 76     }
 77 
 78     //CUBLAS version 2.0
 79     {
 80         cublasHandle_t handle;
 81         cublasStatus_t ret;
 82 
 83         ret = cublasCreate(&handle);
 84         if(ret != CUBLAS_STATUS_SUCCESS){
 85             fprintf(stderr, "cublasSgemm returned error code %d, line(%d)", ret, __LINE__);
 86             goto Error;
 87         }
 88 
 89         cudaEvent_t start;
 90         cudaEvent_t stop;
 91 
 92         cudaStatus = cudaEventCreate(&start);
 93         if(cudaStatus != cudaSuccess){
 94             fprintf(stderr,"Falied to create start Event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
 95             goto Error;
 96         }
 97 
 98         cudaStatus = cudaEventCreate(&stop);
 99         if(cudaStatus != cudaSuccess){
100             fprintf(stderr,"Falied to create stop Event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
101             goto Error;
102         }
103 
104         //recode start event
105         cudaStatus = cudaEventRecord(start,NULL);
106         if(cudaStatus != cudaSuccess){
107             fprintf(stderr,"Failed to record start event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
108             goto Error;
109         }
110 
111         //matrix multiple A*B, beceause matrix is column  primary in cublas, so we can change the input
112         //order to B*A.the reason you can see the file matrix.h
113 
114         float alpha = 1.0f;
115         float beta = 0.0f;
116         //ret = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiHB, matrix_size.uiHA, matrix_size.uiWA,
117             //&alpha, dev_B, matrix_size.uiWB, dev_A, matrix_size.uiWA, &beta, dev_C, matrix_size.uiWA);
118 
119         ret = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiHA, matrix_size.uiHB, matrix_size.uiWB,
120             &alpha, dev_A, matrix_size.uiWA, dev_B, matrix_size.uiWB, &beta, dev_C, matrix_size.uiWB);
121 
122 
123         if(ret != CUBLAS_STATUS_SUCCESS){
124             fprintf(stderr,"cublasSgemm returned error code %d, line(%d)\n", ret, __LINE__);
125         }
126 
127         printf("cublasSgemm done.\n");
128 
129         //recode stop event
130         cudaStatus = cudaEventRecord(stop,NULL);
131         if(cudaStatus != cudaSuccess){
132             fprintf(stderr,"Failed to record stop event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
133             goto Error;
134         }
135 
136         //wait for the stop event to complete
137         cudaStatus = cudaEventSynchronize(stop);
138         if(cudaStatus != cudaSuccess){
139             fprintf(stderr,"Failed to synchronize on the stop event (error code %s)!\n", cudaGetErrorString( cudaStatus ) );
140             goto Error;
141         }
142 
143         float secTotal = 0.0f;
144         cudaStatus = cudaEventElapsedTime(&secTotal ,start, stop);
145         if(cudaStatus != cudaSuccess){
146             fprintf(stderr,"Failed to get time elapsed between event (error code %s)!\n", cudaGetErrorString( cudaStatus ) );
147             goto Error;
148         }
149 
150         //copy result from device to host
151         cudaStatus = cudaMemcpy(h_CUBLAS, dev_C, mem_size_C, cudaMemcpyDeviceToHost);
152         if(cudaStatus != cudaSuccess){
153             fprintf(stderr,"cudaMemcpy dev_C to h_CUBLAS error code %d, line(%d)!\n", cudaStatus, __LINE__);
154             goto Error;
155         }
156 
157     }
158 
159 
160     for(int i = 0; i < matrix_size.uiWC; i++){
161         for(int j = 0; j < matrix_size.uiHC; j++){
162             printf("%f    ", h_CUBLAS[ i*matrix_size.uiWC + j]);
163         }
164         printf("\n");
165     }
166 
167 /*
168     //change the matrix from column primary to rows column primary
169     for(int i = 0; i<matrix_size.uiWC; i++){
170         for(int j = 0; j<matrix_size.uiHC; j++){
171             int at1 = IDX2C(i,j,matrix_size.uiWC);  //element location in rows primary
172             int at2 = i*matrix_size.uiWC +j;        //element location in column primary
173             if(at1 >= matrix_size.uiWC*matrix_size.uiHC || at2 >= matrix_size.uiWC*matrix_size.uiHC)
174                 printf("transc error \n");
175             h_C[ at1 ] = h_CUBLAS[ at2 ];
176         }
177     }
178 */
179 /*
180     for(int i = 0; i<matrix_size.uiWC; i++){
181         for(int j = 0; j<matrix_size.uiHC; j++){
182             //int at1 = IDX2C(i,j,matrix_size.uiWC);  //element location in rows primary
183             int at2 = i*matrix_size.uiWC +j;        //element location in column primary
184             //if(at1 >= matrix_size.uiWC*matrix_size.uiHC || at2 >= matrix_size.uiWC*matrix_size.uiHC)
185                 //printf("transc error \n");
186             h_C[ at2 ] = h_CUBLAS[ at2 ];
187         }
188     }
189 */
190 
191 Error:
192     cudaFree(dev_A);
193     cudaFree(dev_B);
194     cudaFree(dev_C);
195     free(h_CUBLAS);
196     dev_A = NULL;
197     dev_B = NULL;
198     dev_C = NULL;
199     h_CUBLAS = NULL;
200     return cudaStatus;
201 }
202 
203 
204 
205 
206 cudaError_t reduceEdge(){
207     cudaError_t cudaStatus = cudaSuccess;
208 Error:
209     return cudaStatus;
210 }

 

使用cublas 矩阵库函数实现矩阵相乘,布布扣,bubuko.com

使用cublas 矩阵库函数实现矩阵相乘

标签:des   style   blog   http   color   使用   os   io   

原文地址:http://www.cnblogs.com/243864952blogs/p/3903247.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!