标签:
小新正在玩一个简单的电脑游戏。
游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接。小新以某个机器人工厂为起点,按顺时针顺序依次将这 n 个机器人工厂编号为1~n,因为马路是环形的,所以第 n 个机器人工厂和第 1 个机器人工厂是由一段马路连接在一起的。小新将连接机器人工厂的这 n 段马路也编号为 1~n,并规定第 i 段马路连接第 i 个机器人工厂和第 i+1 个机器人工厂(1≤i≤n-1),第 n 段马路连接第 n 个机器人工厂和第 1个机器人工厂。 游戏过程中,每个单位时间内,每段马路上都会出现一些金币,金币的数量会随着时间发生变化,即不同单位时间内同一段马路上出现的金币数量可能是不同的。小新需要机器人的帮助才能收集到马路上的金币。所需的机器人必须在机器人工厂用一些金币来购买,机器人一旦被购买,便会沿着环形马路按顺时针方向一直行走,在每个单位时间内行走一次,即从当前所在的机器人工厂到达相邻的下一个机器人工厂,并将经过的马路上的所有金币收集给小新,例如,小新在 i(1≤i≤n)号机器人工厂购买了一个机器人,这个机器人会从 i 号机器人工厂开始,顺时针在马路上行走,第一次行走会经过 i 号马路,到达 i+1 号机器人工厂(如果 i=n,机器人会到达第 1 个机器人工厂),并将 i 号马路上的所有金币收集给小新。 游戏中,环形马路上不能同时存在 2 个或者 2 个以上的机器人,并且每个机器人最多能够在环形马路上行走 p 次。小新购买机器人的同时,需要给这个机器人设定行走次数,行走次数可以为 1~p 之间的任意整数。当马路上的机器人行走完规定的次数之后会自动消失,小新必须立刻在任意一个机器人工厂中购买一个新的机器人,并给新的机器人设定新的行走次数。 以下是游戏的一些补充说明:
游戏从小新第一次购买机器人开始计时。
输入格式:
第一行 3 个正整数,n,m,p,意义如题目所述。
接下来的 n 行,每行有 m 个正整数,每两个整数之间用一个空格隔开,其中第 i 行描 述了 i 号马路上每个单位时间内出现的金币数量(1≤金币数量≤100),即第 i 行的第 j(1≤j≤m)个数表示第 j 个单位时间内 i 号马路上出现的金币数量。
最后一行,有 n 个整数,每两个整数之间用一个空格隔开,其中第 i 个数表示在 i 号机器人工厂购买机器人需要花费的金币数量(1≤金币数量≤100)。
输出格式:
共一行,包含 1 个整数,表示在 m 个单位时间内,扣除购买机器人 花费的金币之后,小新最多能收集到多少金币。
2 3 2 1 2 3 2 3 4 1 2
5
【数据范围】
对于 40%的数据,2≤n≤40,1≤m≤40。
对于 90%的数据,2≤n≤200,1≤m≤200。
对于 100%的数据,2≤n≤1000,1≤m≤1000,1≤p≤m。
NOIP 2009 普及组 第四题
------------------------------------------------------------------
一些节点组成一个环,相邻节点的道路上不同时间权值不同,机器人要花费,求最多金币
---------------------------------------------------------------------------
几个月前被虐,现在还凑合
f[i][j]表示i个时间到了节点j的最大金币数
可以枚举上一个机器人的p,维护fmx和价值和,复杂度O(n3)
考虑当前状态,可以由上一个状态走来(一定是p>1最优的),也可以新买一个,保存上一个状态的step,就可以O(1)转移了
有点像二维信息,比如vijos1392
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using namespace std; const int N=1005,INF=1e9; int read(){ int x=0,f=1;char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } int n,m,p,coin[N][N],cost[N]; int f[N][N],fmx[N],step[N][N]; inline int pre(int x){ if(x==1) return n; return x-1; } void dp(){ //for(int i=1;i<=n;i++) f[1][n]=coin[] //for(int i=1;i<=m;i++) for(int j=1;j<=n;j++) f[i][j]=-INF,fmx[i]=-INF; for(int j=1;j<=n;j++) f[1][j]=coin[1][pre(j)]-cost[pre(j)],step[1][j]=1,fmx[1]=max(fmx[1],f[1][j]); for(int i=2;i<=m;i++){ fmx[i]=-INF; for(int j=1;j<=n;j++){ int pj=pre(j); f[i][j]=fmx[i-1]+coin[i][pj]-cost[pj]; step[i][j]=1; if(step[i-1][pj]<p&&f[i][j]<f[i-1][pj]+coin[i][pj]) { f[i][j]=f[i-1][pj]+coin[i][pj]; step[i][j]=step[i-1][pj]+1; } fmx[i]=max(fmx[i],f[i][j]); } } } int main(){ n=read();m=read();p=read(); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) coin[j][i]=read(); for(int i=1;i<=n;i++) cost[i]=read(); dp(); printf("%d",fmx[m]); }
NOIP2009pj道路游戏[环形DP 转移优化 二维信息]
标签:
原文地址:http://www.cnblogs.com/candy99/p/5833114.html