http://acm.hdu.edu.cn/showproblem.php?pid=3221
一晚上搞出来这么一道题。。Mark。
给出这么一个程序,问funny函数调用了多少次。
我们定义数组为所求:f[1] = a,f[2] = b, f[3] = f[2]*f[3]......f[n] = f[n-1]*f[n-2]。对应的值表示也可为a^1*b^0%p,a^0*b^1%p,a^1*b^1%p,.....a^fib[n-3]*b^fib[n-2]%p。即a,b的指数从n=3以后与fib数列一样。
因为n很大,fib[n]也想当大。a^fib[n]%p可以利用a^fib[n]%p = a^(fib[n]%phi[p]+phi[p])%p进行降幂,条件时fib[n]>=phi[p]。求fib[n]%phi[p]可以构造矩阵,利用矩阵快速幂求fib[n]%phi[p]。
#include <stdio.h> #include <iostream> #include <map> #include <set> #include <list> #include <stack> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #include <algorithm> #define LL long long #define _LL __int64 #define eps 1e-12 #define PI acos(-1.0) #define C 240 #define S 20 using namespace std; const int maxn = 110; struct matrix { LL mat[3][3]; void init() { memset(mat,0,sizeof(mat)); for(int i = 0; i < 2; i++) mat[i][i] = 1; } } m; LL a,b,p,n,phi_p; LL fib[10000000]; //phi[p] LL Eular(LL num) { LL res = num; for(int i = 2; i*i <= num; i++) { if(num%i == 0) { res -= res/i; while(num%i == 0) num /= i; } } if(num > 1) res -= res/num; return res; } //矩阵相乘 matrix mul_matrix(matrix x, matrix y) { matrix ans; memset(ans.mat,0,sizeof(ans.mat)); for(int i = 0; i < 2; i++) { for(int k = 0; k < 2; k++) { if(x.mat[i][k] == 0) continue; for(int j = 0; j < 2; j++) { ans.mat[i][j] = (ans.mat[i][j] + x.mat[i][k]*y.mat[k][j])%phi_p; } } } return ans; } //a^t%phi_p LL pow_matrix(LL t) { matrix a,b; a.mat[0][0] = a.mat[0][1] = a.mat[1][0] = 1; a.mat[1][1] = 0; b.init(); while(t) { if(t&1) b = mul_matrix(a,b); a = mul_matrix(a,a); t >>= 1; } return b.mat[0][0]; } //a^t%p LL pow(LL a, LL t) { LL res = 1; a %= p; while(t) { if(t&1) res = res*a%p; a = a*a%p; t >>= 1; } return res; } //a^fib[t]%p转化为a^(fib[t]%phi[p]+phi[p])%p,fib[t] >= phi[p]。 LL solve(LL a, LL t) { fib[0] = 1; fib[1] = 1; int i; for(i = 2; i <= t; i++) { fib[i] = fib[i-1] + fib[i-2]; if(fib[i] >= phi_p) break; } if(i <= t) //当满足条件fib[t] >= phi[p]时,进行降幂 { LL c = pow_matrix(t) + phi_p; return pow(a,c); } else return pow(a,fib[t]); } int main() { int test; scanf("%d",&test); for(int item = 1; item <= test; item++) { scanf("%lld %lld %lld %lld",&a,&b,&p,&n); printf("Case #%d: ",item); if(n == 1) { printf("%lld\n",a%p); continue; } if(n == 2) { printf("%lld\n",b%p); continue; } if(n == 3) { printf("%lld\n",a*b%p); continue; } if(p == 1) { printf("0\n"); continue; } phi_p = Eular(p); LL res = solve(a,n-3)*solve(b,n-2)%p; printf("%lld\n",res); } return 0; }
hdu 3221 Brute-force Algorithm(快速幂取模,矩阵快速幂求fib),布布扣,bubuko.com
hdu 3221 Brute-force Algorithm(快速幂取模,矩阵快速幂求fib)
原文地址:http://blog.csdn.net/u013081425/article/details/38477089