References
[1] B. Bose and W. E. L. Grimson, “Improving objectclassification in far-field video,” in Proc. CVPR, 2004.
[2] P. Carbonetto, N. de Freitas, and K. Barnard, “Astatistical model for general contextual object recognition,” inProc.ECCV, 2004.
[3] M. Collins, R. Schapire, and Y. Singer, “Logisticregression, adaboost and bregman distances,” Machine Learning,vol.48, no. 1-3, 2002.
[4] A. Criminisi, I. Reid, and A. Zisserman, “Single viewmetrology,” IJCV, vol. 40, no. 2, 2000.
[5] R. Duda, P. Hart, and D. Stork, PatternClassification.Wiley-Interscience Publication, 2000.
[6] M. R. Everingham, B. T. Thomas, and T. Troscianko,“Headmounted mobility aid for low vision using scene classificationtechniques,” Int. J. of Virt. Reality, vol. 3, no. 4, 1999.
[7] P. Felzenszwalb and D. Huttenlocher, “Efficientgraph-based image segmentation,” IJCV, vol. 59, no. 2, 2004.
[8] J. Friedman, T. Hastie, and R. Tibshirani, “Additivelogistic regression: a statistical view of boosting,” Annals ofStatistics, vol. 28, no. 2, 2000.
[9] F. Han and S.-C. Zhu, “Bayesian reconstruction of 3dshapes and scenes from a single image,” in Int. Work. onHigherLevel Know. in 3D Modeling and Motion Anal., 2003.
[10] R. I. Hartley and A. Zisserman, Multiple View Geometry inComputer Vision, 2nd ed. Cambridge University Press,2004.
[11] X. He, R. S. Zemel, and M.′A. Carreira-Perpi? n′ an,“Multiscale conditional random fields for image labeling.” inProc.CVPR, 2004.
[12] D. Hoiem, A. A. Efros, and M. Hebert, “Automatic photopop-up,” in ACM SIGGRAPH 2005.
[13] W. Hong, A. Y. Yang, K. Huang, and Y. Ma, “On symmetryand multiple-view geometry: Structure, pose, and calibration from asingle image,” IJCV, vol. 60, no. 3, 2004.
[14] S. Konishi and A. Yuille, “Statistical cues for domainspecific image segmentation with performance analysis.” inProc.CVPR, 2000.
[15] J. Kosecka and W. Zhang, “Video compass,” in Proc.ECCV.Springer-Verlag, 2002.
[16] S. Kumar and M. Hebert, “Discriminative random fields: Adiscriminative framework for contextual interaction inclassification,” in Proc. ICCV. IEEE Comp. Society, 2003.
[17] D. Liebowitz, A. Criminisi, and A. Zisserman, “Creatingarchitectural models from images,” in Proc. EuroGraphics,vol. 18,1999.
[18] D. Marr, Vision. San Francisco: Freeman, 1982.
[19] K. Mikolajczyk, C. Schmid, and A. Zisserman, “Humandetection based on a probabilistic assembly of robust partdetectors,” in Proc. ECCV. Springer-Verlag, May 2004.
[20] K. Murphy, A. Torralba, and W. T. Freeman, “Graphicalmodel for recognizing scenes and objects,” in Proc.NIPS,2003.
[21] Y. Ohta, Knowledge-Based Interpretation Of OutdoorNatural Color Scenes. Pitman, 1985.
[22] “The pascal object recognition database collection,”Website, PASCAL Challenges Workshop, 2005,http://www.pascal-network.org/challenges/VOC/.
[23] M. Pollefeys, R. Koch, and L. J. V. Gool,“Self-calibration and metric reconstruction in spite of varying andunknown internal camera parameters,” in Proc. ICCV, 1998.
[24] X. Ren and J. Malik, “Learning a classification model forsegmentation,” in Proc. ICCV, 2003.
[25] U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Isbottom-up attention useful for object recognition,” in Proc.CVPR,2004.
[26] H. Schneiderman, “Learning a restricted bayesian networkfor object detection,” in Proc. CVPR, 2004.
[27] J. Shi and J. Malik, “Normalized cuts and imagesegmentation,” IEEE Trans. PAMI, vol. 22, no. 8, August 2000.
[28] A. Singhal, J. Luo, and W. Zhu, “Probabilistic spatialcontext models for scene content understanding.” in Proc.CVPR,2003.
[29] A. Torralba, “Contextual priming for objectdetection,”IJCV, vol. 53, no. 2, 2003.
[30] A. Torralba, K. P. Murphy, and W. T. Freeman, “Contextualmodels for object detection using boosted random fields,” in Proc.NIPS, 2004.
[31] A. Torralba and P. Sinha, “Detecting faces inimpoverished images,” Tech. Rep., 2001.
[32] P. Viola and M. J. Jones, “Robust real-time facedetection,”
IJCV, vol. 57, no. 2, 2004.
[33] P. Viola, M. J. Jones, and D. Snow, “Detectingpedestrians using patterns of motion and appearance,” in Proc.ICCV,2003.6