码迷,mamicode.com
首页 > 其他好文 > 详细

笔试题集锦

时间:2016-09-07 23:15:53      阅读:216      评论:0      收藏:0      [点我收藏+]

标签:笔试题

1.数据库以及线程发生死锁的原理及必要条件,如何避免死锁

死锁的起因是并发进程的资源竞争。产生死锁的根本原因在于系统提供的资源个数少于并发进程多、所要求的该类资源数。

线程发生死锁的原理:线程在共享资源的过程中,会出现资源争夺现象,为了合理安排资源的共享,需要对资源进行加锁处理,首先获得优先权的的线程对当前资源进行加锁,防止别的资源进入,直至完成自己的任务后才解锁。如果在执行任务的时候需要获取别的资源,争夺别的资源目前还没有释放的锁,而别的资源又在等待当前这个现场释放锁才能释放需要的锁,处于一个一直相互等待的状态,也就是发生了死锁。
简单的伪代码:
        thread1:                       
                 lock(mutex1)
                 do something;
                 lock(mutex2);
                 do ...
                 unlock(mutex2);
                 unlock(mutex1);  
        thread2:                       
                 lock(mutex2);
                 do something;
                 lock(mutex1);
                 do ...
                 unlock(mutex1);
                 unlock(mutex2);  

产生死锁的原因主要是:

(1) 因为系统资源不足。

(2) 进程运行推进的顺序不合适。

(3) 资源分配不当等。

产生死锁的四个必要条件:

(1)互斥条件:一个资源每次只能被一个进程使用。

(2)请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。

(3)不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。

(4)循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系

死锁的避免:使用银行家算法,每次在分配资源之前,先判断资源分配后,系统是否会进入不安全的状态,会则不分配,不会则分配。

动态检查

避免死锁的方法:一般分为预防、避免、检测与恢复等3种。 

预防是采用某种策略,限制并发进程对资源的请求,从而使得死锁的必要条件在系统执行的任何时间都不满足。 

避免是指系统在分配资源时,根据资源的使用情况提前做出预测,从而避免死锁的发生。 

死锁的检测与恢复是指系统设有专门的机构,当死锁发生时,该机构能够检测到死锁的发生的位置和原因,并能通过外力破坏死锁发生的必要条件,从而使得并发进程从死锁状态中恢复出来。 

2.面向对象的三个基本元素,五个基本原则。

面向对象的三个基本特征是:封装、继承、多态。

1)封装

封装最好理解了。封装是面向对象的特征之一,是对象和类概念的主要特性。

封装,也就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏。

2)继承

面向对象编程 (OOP) 语言的一个主要功能就是“继承”。继承是指这样一种能力:它可以使用现有类的所有功能,并在无需重新编写原来的类的情况下对这些功能进行扩展。

通过继承创建的新类称为“子类”或“派生类”。

被继承的类称为“基类”、“父类”或“超类”。

继承的过程,就是从一般到特殊的过程。

要实现继承,可以通过“继承”(Inheritance)和“组合”(Composition)来实现。

在某些 OOP 语言中,一个子类可以继承多个基类。但是一般情况下,一个子类只能有一个基类,要实现多重继承,可以通过多级继承来实现。

继承概念的实现方式有三类:实现继承、接口继承和可视继承。

  • 实现继承 是指使用基类的属性和方法而无需额外编码的能力;

  • 接口继承 是指仅使用属性和方法的名称、但是子类必须提供实现的能力;

  • 可视继承 是指子窗体(类)使用基窗体(类)的外观和实现代码的能力。

在考虑使用继承时,有一点需要注意,那就是两个类之间的关系应该是“属于”关系。例如,Employee 是一个人,Manager 也是一个人,因此这两个类都可以继承 Person 类。但是 Leg 类却不能继承 Person 类,因为腿并不是一个人。

抽象类仅定义将由子类创建的一般属性和方法,创建抽象类时,请使用关键字 Interface 而不是 Class。

OO开发范式大致为:划分对象→抽象类→将类组织成为层次化结构(继承和合成) →用类与实例进行设计和实现几个阶段。

3)多态

多态性(polymorphisn)是允许你将父对象设置成为和一个或更多的他的子对象相等的技术,赋值之后,父对象就可以根据当前赋值给它的子对象的特性以不同的方式运作。简单的说,就是一句话:允许将子类类型的指针赋值给父类类型的指针。

实现多态,有二种方式,覆盖,重载。

覆盖,是指子类重新定义父类的虚函数的做法。

重载,是指允许存在多个同名函数,而这些函数的参数表不同(或许参数个数不同,或许参数类型不同,或许两者都不同)。

其实,重载的概念并不属于“面向对象编程”,重载的实现是:编译器根据函数不同的参数表,对同名函数的名称做修饰,然后这些同名函数就成了不同的函数(至少对于编译器来说是这样的)。如,有两个同名函数:function func(p:integer):integer;和function func(p:string):integer;。那么编译器做过修饰后的函数名称可能是这样的:int_func、str_func。对于这两个函数的调用,在编译器间就已经确定了,是静态的(记住:是静态)。也就是说,它们的地址在编译期就绑定了(早绑定),因此,重载和多态无关!真正和多态相关的是“覆盖”。当子类重新定义了父类的虚函数后,父类指针根据赋给它的不同的子类指针,动态(记住:是动态!)的调用属于子类的该函数,这样的函数调用在编译期间是无法确定的(调用的子类的虚函数的地址无法给出)。因此,这样的函数地址是在运行期绑定的(晚邦定)。结论就是:重载只是一种语言特性,与多态无关,与面向对象也无关!引用一句Bruce Eckel的话:“不要犯傻,如果它不是晚绑定,它就不是多态。”

那么,多态的作用是什么呢?

我们知道,封装可以隐藏实现细节,使得代码模块化;继承可以扩展已存在的代码模块(类);它们的目的都是为了——代码重用。而多态则是为了实现另一个目的——接口重用!多态的作用,就是为了类在继承和派生的时候,保证使用“家谱”中任一类的实例的某一属性时的正确调用。

二、五种设计原则

单一职责原则(Single-Resposibility Principle)。"对一个类而言,应该仅有一个引起它变化的原因。"本原则是我们非常熟悉地"高内聚性原则"的引申,但是通过将"职责"极具创意地定义为"变化的原因",使得本原则极具操作性,尽显大师风范。同时,本原则还揭示了内聚性和耦合性,基本途径就是提高内聚性;如果一个类承担的职责过多,那么这些职责就会相互依赖,一个职责的变化可能会影响另一个职责的履行。其实OOD的实质,就是合理地进行类的职责分配。

开放封闭原则(Open-Closed principle)。"软件实体应该是可以扩展的,但是不可修改。"本原则紧紧围绕变化展开,变化来临时,如果不必改动软件实体裁的源代码,就能扩充它的行为,那么这个软件实体设计就是满足开放封闭原则的。如果说我们预测到某种变化,或者某种变化发生了,我们应当创建抽象类来隔离以后发生的同类变化。在Java中,这种抽象是指抽象基类或接口;在C++中,这各抽象是指抽象基类或纯抽象基类。当然,没有对所有情况都贴切的模型,我们必须对软件实体应该面对的变化做出选择。

Liskov替换原则(Liskov-Substituion Principle)。"子类型必须能够替换掉它们的基类型。"本原则和开放封闭原则关系密切,正是子类型的可替换性,才使得使用基类型模块无需修改就可扩充。Liskov替换原则从基于契约的设计演化而来,契约通过为每个方法声明"先验条件"和"后验条件";定义子类时,必须遵守这些"先验条件"和"后验条件"。当前基于契的设计发展势头正劲,对实现"软件工厂"的"组装生产"梦想是一个有力的支持。

依赖倒置原则(Dependecy-Inversion Principle)。"抽象不应依赖于细节,细节应该依赖于抽象。"本原则几乎就是软件设计的正本清源之道。因为人解决问题的思考过程是先抽象后具体,从笼统到细节,所以我们先生产出的势必是抽象程度比较高的实体,而后才是更加细节化的实体。于是,"细节依赖于抽象"就意味着后来的依赖于先前的,这是自然而然的重用之道。而且,抽象的实体代表着笼而统之的认识,人们总是比较容易正确认识它们,而且本身也是不易变的,依赖于它们是安全的。依赖倒置原则适应了人类认识过程的规律,是面向对象设计的标志所在。

接口隔离原则(Interface-Segregation Principle)。"多个专用接口优于一个单一的通用接口。"本原则是单一职责原则用于接口设计的自然结果。一个接口应该保证,实现该接口的实例对象可以只呈现为单一的角色;这样,当某个客户程序的要求发生变化,而迫使接口发生改变时,影响到其他客户程序的可能性小。

3.现在有一个手机,手机上的键盘上有这样的对应关系,2对应"abc",3对应"def".....手机里面有一个userlist用户列表,当我们输入942的时候出来拼音的对应可能是“xia”,“zha”,“xi”,“yi”等,当我们输入9264的时候出来是yang,可能是“样”,“杨”,“往”等,现在我们输入一个字符串数字,比如926等,要在电话簿userlist中查找出对应的用户名和电话号码并返回结果。 C++语言: 电话号码对应的英语单词(注意此题的非递归做法)

#include#include#define N 4 //电话号码个数 
 
using namespace std;
 
char c[][10] = {"","","ABC","DEF","GHI","JKL","MNO","PQRS","TUV","WXYZ"};//存储各个数字所能代表的字符
int number[N] = {2, 4 ,7, 9}; //存储电话号码
int total[10] = {0, 0, 3, 3, 3, 3, 3, 4, 3, 4}; //各个数组所能代表的字符总数
int answer[N]; //数字目前所代表的字符在其所能代表的字符集中的位置,初始为0
 
void Search(int *number, int n); //非递归的办法
void RecursiveSearch(int *number, int cur, char *ps, int n); //递归的办法
int main()
{
       //Search(number, N);
       char ps[N+1] = {0};
       RecursiveSearch(number, 0, ps, N);
       return 0;
}
 
 
void Search(int *number, int n)
{
       int i;
       while(1)
       {
               for(i=0; i<n; ++i)="" printf("%c",="" c[number[i]][answer[i]]);="" printf("\n");="" int="" k="n-1;" 用k和while循环来解决扩展性问题,模拟了递归="" while(k="">= 0)
               {
</n;>

   <n; ++i)="" printf("%c",="" c[number[i]][answer[i]]);="" printf("\n");="" int="" k="n-1;" 用k和while循环来解决扩展性问题,模拟了递归="" while(k="">                        if(answer[k] < total[number[k]]-1) { ++answer[k]; break; } else { answer[k] = 0; --k; } } if(k < 0) break; } } /*递归的解法: number为存储电话号码的数组,pos为当前处理的数字在number中的下标,初始为0 *ps为一外部数组,用于存放字母,n代表电话号码的长度(个数) * 此递归的方法好理解,比上面非递归的办法好写易懂 * */ </n;>

   <n; ++i)="" printf("%c",="" c[number[i]][answer[i]]);="" printf("\n");="" int="" k="n-1;" 用k和while循环来解决扩展性问题,模拟了递归="" while(k="">
</n;>
void RecursiveSearch(int *number, int pos, char *ps, int n)
{
       int i;
       for(i=0; i<total[number[pos]]; ++i)
       {
               ps[pos] = c[number[pos]][i];
               if(pos == n-1)
                       cout<<ps<<endl;
               else
                       RecursiveSearch(number, pos+1, ps, n);
       }
}

4.windows内存管理的机制以及优缺点

分页存储管理基本思想:

用户程序的地址空间被划分成若干固定大小的区域,称为“页”,相应地,内存空间分成若干个物理块,页和块的大小相等。可将用户程序的任一页放在内存的任一块中,实现了离散分配。

分段存储管理基本思想:

将用户程序地址空间分成若干个大小不等的段,每段可以定义一组相对完整的逻辑信息。存储分配时,以段为单位,段与段在内存中可以不相邻接,也实现了离散分配。

段页式存储管理基本思想:

分页系统能有效地提高内存的利用率,而分段系统能反映程序的逻辑结构,便于段的共享与保护,将分页与分段两种存储方式结合起来,就形成了段页式存储管理方式。

在段页式存储管理系统中,作业的地址空间首先被分成若干个逻辑分段,每段都有自己的段号,然后再将每段分成若干个大小相等的页。对于主存空间也分成大小相等的页,主存的分配以页为单位。

段页式系统中,作业的地址结构包含三部分的内容:段号 页号 页内位移量

程序员按照分段系统的地址结构将地址分为段号与段内位移量,地址变换机构将段内位移量分解为页号和页内位移量。

为实现段页式存储管理,系统应为每个进程设置一个段表,包括每段的段号,该段的页表始址和页表长度。每个段有自己的页表,记录段中的每一页的页号和存放在主存中的物理块号。

windows 内存管理方式主要分为:页式管理,段式管理,段页式管理。

页式管理的优点是没有外碎片,每个内碎片不超过页的大小。缺点是,程序全部装入内存,要求有相应的硬件支持。

段式管理优点是可以分别编写和编译,可以针对不同类型的段采用不同的保护,可以按段为单位来进行共享,包括通过动态链接进行代码共享。缺点是会产生碎片。

段页式管理是段式管理与页式管理方案结合而成的所以具有他们两者的优点。但反过来说,由于管理软件的增加,复杂性和开销也就随之增加了。

本文出自 “小止” 博客,请务必保留此出处http://10541556.blog.51cto.com/10531556/1847411

笔试题集锦

标签:笔试题

原文地址:http://10541556.blog.51cto.com/10531556/1847411

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!