标签:
Description
Input
Output
Sample Input
5 1 6 3 10 4
Sample Output
2 6 16
【题意】求C(n,m)的质因子的个数。
【定理】设正整数n的所有素因子分解n=p1^a1*p2^a2*p3^a3****ps^as,那么T(n)=(a1+1)*(a2+1)*(a3+1)***(an+1);(求因子的个数的公式)
1.求出N以内素数
2.ei=[N/pi^1]+ [N/pi^2]+ …… + [N/pi^n] 其中[]为取整。即可以 int ei=0;while(N) ei+=(N/=pi);
3.套公式计算了,M=(e1+1)*(e2+1)*……*(en+1)
#include<iostream> #include<stdio.h> #include<string.h> using namespace std; const int N=450; int prime[1000]={2,3,5}; int k=3; long long n,m,cnt[N][N]; void get_prime()//将1000以内的素数存入prime数组; { int flag; int p=2; for(int i=7;i<=1000;i+=p) { flag=0; p=6-p;//巧妙的跳过了3的倍数,提高了效率 for(int j=0;prime[j]*prime[j]<=i;j++) { if(i%prime[j]==0) { flag=1; break; } } if(!flag) prime[k++]=i; } } void init() { memset(cnt,0,sizeof(cnt)); get_prime(); long long tmp,ret; for(int i=2;i<=431;i++) { for(int j=0;prime[j]<=i;j++) { tmp=i; ret=0; while(tmp) { tmp=tmp/prime[j]; ret+=tmp; } cnt[i][prime[j]]=ret;//i的质因子数 } } } int main() { init(); long long ret,ans; while(~scanf("%lld%lld",&n,&m)) { ans=1; for(int i=0;prime[i]<=n;i++) { ret=cnt[n][prime[i]]-cnt[m][prime[i]]-cnt[n-m][prime[i]];//c(n,m)=n!/((n-m)!m!),把对应因子个数相减,我们就得到了c(n,m)分解的结果 ans*=(ret+1); } printf("%lld\n",ans); } return 0; }
标签:
原文地址:http://www.cnblogs.com/iwantstrong/p/5851443.html