标签:
标签:动态规划
描述:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
解题思路:
这一题做的很快,与之前的字符串匹配问题一样,在word1与word2的两个向量上分解字符串,同时遍历两个字符串:分别在两个子串中进行比较,
对于子串中拥有相同的字符的情况下:加入这个字符与不加入这个字符的意义是相同的,不会有更多的变化,所以有公式:
dp[i][j] = dp[i-1][j-1]
当两个子串的匹配的字符不同的情况下:有三种情况可以达到当前状态,修改1位,删除1位,加入1位,三个分别的位置为dp[i-1][j], dp[i][j-1],dp[i-1][j-1]
且三个位置记录着之前状态下,所存在的最小变化情况。所以要在当前状态下达到最小,则需要在之前最小的情况下加上1,所以公式有:
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])+1
参考代码:
public int minDistance(String word1, String word2) { // write your code here int[][] dp = new int[word1.length()+1][word2.length()+1]; for(int i = 0; i<=word1.length(); i++){ dp[i][0] = i; } for(int j = 0; j<=word2.length(); j++){ dp[0][j] = j; } for(int i=1; i<= word1.length(); i++){ for(int j=1; j<=word2.length(); j++){ if(word1.charAt(i-1)==word2.charAt(j-1)){ dp[i][j] = dp[i-1][j-1]; }else{ dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1]))+1; } } } return dp[word1.length()][word2.length()]; }
标签:
原文地址:http://www.cnblogs.com/whaochen205/p/5855127.html