码迷,mamicode.com
首页 > 其他好文 > 详细

2014 summer day 6 概率dp

时间:2014-08-11 17:26:42      阅读:152      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   os   io   for   2014   

全期望公式:

全概率公式:

POJ 2096

【题意】:

一个软件有s个子系统,会产生n种bug。
某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
【分析】:需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
属于某种类型的概率是1/n。

那么dp[i][j]表示还要找到i个系统,还要找到j种病毒的概率。

具体dp方程看代码。但怎么来说这个dp方程的正确性都怪怪的。

s,n<=1000

【代码】:

bubuko.com,布布扣
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <math.h>
 4 
 5 using namespace std;
 6 
 7 double dp[1005][1005];
 8 int S,N;
 9 int main(){
10     while(~scanf("%d%d",&N,&S)){
11         double n=N+0.0;
12         double s=S+0.0;
13         dp[S][N]=0;
14         for(int i=S;i>=0;i--){
15             for(int j=N;j>=0;j--){
16                 double ans=1;
17                 if (i==S && j==N) continue;
18                 if (i<S) ans+=dp[i+1][j]*(s-i)*j/(s*n);
19                 if (j<N) ans+=dp[i][j+1]*(n-j)*i/(s*n);
20                 if (i<S && j<N) ans+=dp[i+1][j+1]*(s-i)*(n-j)/(s*n);
21                 dp[i][j]=ans/(1.0-i*j/(s*n));
22             }
23         }
24         printf("%.4f\n",dp[0][0]);
25     }
26     return 0;
27 }
View Code

 

HDU 4405

【题意】:

有n个格子,掷色子的掷出的数目就是你一次到移动格数(1--6的点数)。
其中有m个飞行通道可以让你直接从第xi格飞到第yi格。
传送中是连续的,而且不要投骰子
问你走到终点的期望是多少。

【分析】:

dp[i]:开始时处于i位置时要走的期望步数。

一道状态转移要特判的dp,因为一旦从x点可以直接到y点的话,则dp[x]=dp[y];

否则dp[i]=1/6*sigm(dp[i+1]...dp[i+6])+1,i>=N时dp[i]=1;

具体处理看代码。

【代码】:

bubuko.com,布布扣
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <math.h>
 4 
 5 using namespace std;
 6 
 7 int N,M;
 8 int c[100010];
 9 double dp[100010];
10 int dfs(int i){
11     if (c[i]==i) return c[i];
12     else return dfs(c[i]);
13 }
14 int main(){
15     while(~scanf("%d%d",&N,&M)){
16         if (N==0 && M==0) break;
17         for(int i=0;i<=N;i++){
18             c[i]=i;
19         }
20         for(int i=1;i<=M;i++){
21             int x,y;
22             scanf("%d%d",&x,&y);
23             c[x]=y;
24         }
25         for(int i=0;i<=N;i++){
26             if (c[i]==i) continue;
27             else c[i]=dfs(i);
28         }
29         for(int i=N;i<=N+7;i++) {
30             dp[i]=0;
31             c[i]=i;
32         }
33         for(int i=N-1;i>=0;i--){
34             double ans=0;
35             if (c[i]!=i){
36                 dp[i]=dp[c[i]];
37                 continue;
38             }
39             for(int j=1;j<=6;j++) {
40                 int x=i+j;
41                 ans+=dp[c[x]];
42             }
43             ans=ans*(1/6.0)+1;
44             dp[i]=ans;
45         }
46         printf("%.4f\n",dp[0]);
47     }
48     return 0;
49 }
View Code

 

HDU 4035

【题意】:(%>_<%异次元杀阵有没有)

有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
    从结点1出发,开始走,在每个结点i都有3种可能:
        1.被杀死,回到结点1处(概率为ki)
        2.找到出口,走出迷宫 (概率为ei)
        3.和该点相连有m条边,随机走一条
    求:走出迷宫所要走的边数的期望值。

 

【分析】:(按照kuangbin的博客推导了一遍,写在本子上,无耻地将之分析粘过来)

    设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。

    叶子结点:
    E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
         = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);

    非叶子结点:(m为与结点相连的边数)
    E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
         = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);

    设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;

    对于非叶子结点i,设j为i的孩子结点,则
    ∑(E[child[i]]) = ∑E[j]
                   = ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
                   = ∑(Aj*E[1] + Bj*E[i] + Cj)
    带入上面的式子得
    (1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
    由此可得
    Ai =        (ki+(1-ki-ei)/m*∑Aj)   / (1 - (1-ki-ei)/m*∑Bj);
    Bi =        (1-ki-ei)/m            / (1 - (1-ki-ei)/m*∑Bj);
    Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);

    对于叶子结点
    Ai = ki;
    Bi = 1 - ki - ei;
    Ci = 1 - ki - ei;

    从叶子结点开始,直到算出 A1,B1,C1;

    E[1] = A1*E[1] + B1*0 + C1;
    所以
    E[1] = C1 / (1 - A1);
    若 A1趋近于1则无解...

【代码】:

bubuko.com,布布扣
 1 /*
 2 
 3 */
 4 #include <iostream>
 5 #include <stdio.h>
 6 #include <math.h>
 7 #include <vector>
 8 #define eps 1e-10
 9 using namespace std;
10 vector<int>G[10010];
11 double A[10010];
12 double B[10010];
13 double C[10010];
14 double e[10010],k[10010],p[10010];
15 
16 int N,K;
17 bool dfs(int u,int fa){
18     int m=G[u].size();
19     double sumA=0,sumB=0,sumC=0;
20     for(int i=0;i<m;i++){
21         int v=G[u][i];
22         if (v==fa) continue;
23         if (!dfs(v,u)) return false;
24         sumB+=p[u]/m*B[v];
25         sumA+=p[u]/m*A[v];
26         sumC+=p[u]/m*C[v];
27     }
28     if (1-sumB<eps) return false;
29     A[u]=(k[u]+sumA)/(1-sumB);
30     B[u]=p[u]/m/(1-sumB);
31     C[u]=(p[u]+sumC)/(1-sumB);
32     return true;
33 }
34 int main(){
35     int t;
36     scanf("%d",&t);
37     for(int cas=1;cas<=t;cas++){
38         scanf("%d",&N);
39         int u,v;
40         for(int i=0;i<=N;i++) G[i].clear();
41         for(int i=0;i<N-1;i++){
42             scanf("%d%d",&u,&v);
43             G[u].push_back(v);
44             G[v].push_back(u);
45         }
46         for(int i=1;i<=N;i++){
47             scanf("%lf%lf",&k[i],&e[i]);
48             k[i]/=100;
49             e[i]/=100;
50             p[i]=1-k[i]-e[i];
51         }
52         printf("Case %d: ",cas);
53         if (dfs(1,-1)==false || (1-A[1]<eps)){
54             printf("impossible\n");
55         }else {
56             double ans=C[1]/(1-A[1]);
57             printf("%.6f\n",ans);
58         }
59     }
60     return 0;
61 }
View Code

 

HDU 3853

【题意】:有一个人被困在一个 R*C(2<=R,C<=1000) 的迷宫中,起初他在 (1,1) 这个点,迷宫的出口是 (R,C)。在迷宫的每一个格子中,他能花费 2 个魔法值开启传送通道。假设他在 (x,y) 这个格子中,开启传送通道之后,有 p_lift[i][j] 的概率被送到 (x,y+1),有 p_down[i][j] 的概率被送到 (x+1,y),有 p_loop[i][j] 的概率被送到 (x,y)。问他到出口需要花费的魔法值的期望是多少。

【分析】:DP[i][j]表示现在处在(i,j)点时,需要花费的期望天数

dp[i][j]=mov0*dp[i][j]+mov1*dp[i][j+1]+mov2*dp[i+1][j]+2

写出全期望公式,但是要防止除0的发生,即1-mov0<eps,特判跳过这点就行了。表示不能走到这一点

 即:

 for(int i=N;i>=1;i--){
            for(int j=M;j>=1;j--){
                if (vis[i][j]) continue;
                double ans=2;
                if (!vis[i][j+1]) ans+=mov[i][j][1]*dp[i][j+1];
                if (!vis[i+1][j]) ans+=mov[i][j][2]*dp[i+1][j];
                dp[i][j]=ans/(1-mov[i][j][0]);
            }
        }
【代码】:
bubuko.com,布布扣
 1 /*
 2 
 3 */
 4 #include <iostream>
 5 #include <stdio.h>
 6 #include <math.h>
 7 #include <vector>
 8 #include <string.h>
 9 #define eps 1e-10
10 using namespace std;
11 //int a[][2]={{0,0},{0,1},{1,0}};
12 double dp[1004][1004];
13 double mov[1004][1004][3];
14 bool vis[1004][1004];
15 int N,M;
16 int main(){
17     while(~scanf("%d%d",&N,&M)){
18         memset(vis,false,sizeof(vis));
19         for(int i=1;i<=N;i++){
20             for(int j=1;j<=M;j++){
21                 for(int k=0;k<3;k++){
22                     scanf("%lf",&mov[i][j][k]);
23                     if (1-mov[i][j][0]<eps) vis[i][j]=true;
24                 }
25             }
26         }
27         //dp[i][j]=mov0*dp[i][j]+mov1*dp[i][j+1]+mov2*dp[i+1][j]+2;
28         //dp[N][M]=0;
29         //dp[1][1]=ans;
30         for(int i=0;i<=N+1;i++) dp[i][M+1]=0;
31         for(int i=0;i<=M+1;i++) dp[N+1][i]=0;
32         for(int i=N;i>=1;i--){
33             for(int j=M;j>=1;j--){
34                 if (vis[i][j]) continue;
35                 double ans=2;
36                 if (!vis[i][j+1]) ans+=mov[i][j][1]*dp[i][j+1];
37                 if (!vis[i+1][j]) ans+=mov[i][j][2]*dp[i+1][j];
38                 dp[i][j]=ans/(1-mov[i][j][0]);
39             }
40         }
41         printf("%.3f\n",dp[1][1]);
42     }
43     return 0;
44 }
View Code

POJ 3071

【题意】:

2^n支球队按照竞赛图踢足球,
给你任意两支球队相互之间踢赢的概率,
求最后那支球队最可能夺冠。

【分析】:每轮剩下的队伍是一定的,而且到底和谁PK也是一定的,按竞赛图枚举即可

//dp[i][j] = ∑dp[i-1][k]*p[j][k]*dp[i-1][j]
//k表示可能与j 比赛的队伍,那么k有哪些呢?
//当i=1时,和1
//当i=2时,和3,4
//当i=3时,和5,6,7,8
//就是 2^(i-1)+1---->2^(i)

【代码】:

bubuko.com,布布扣
 1 /*
 2 题意:2^n支球队按照竞赛图踢足球,
 3 给你任意两支球队相互之间踢赢的概率,
 4 求最后那支球队最可能夺冠。
 5 */
 6 #include <iostream>
 7 #include <stdio.h>
 8 #include <math.h>
 9 #include <vector>
10 #include <string.h>
11 #define eps 1e-10
12 using namespace std;
13 //dp[i][j] = ∑dp[i-1][k]*p[j][k]*dp[i-1][j]
14 //k表示可能与j 比赛的队伍,那么k有哪些呢?
15 //当i=1时,和1
16 //当i=2时,和3,4
17 //当i=3时,和5,6,7,8
18 //就是 2^(i-1)+1---->2^(i)
19 double dp[10][150];
20 double p[150][150];
21 int N;
22 int main(){
23     while(~scanf("%d",&N)&& N!=-1){
24         for(int i=0;i<(1<<N);i++){
25             dp[0][i]=1;
26         }
27         for(int i=0;i<(1<<N);i++){
28             for(int j=0;j<(1<<N);j++){
29                 scanf("%lf",&p[i][j]);
30             }
31         }
32         for(int i=1;i<=N;i++){
33             for(int j=0;j<(1<<N);j++){
34                 dp[i][j]=0;
35                 for(int k=0;k<(1<<N);k++){
36                     if(((j>>(i-1))^1)==(k>>(i-1))){
37                     dp[i][j]+=dp[i-1][k]*dp[i-1][j]*p[j][k];
38 //                    cout<<i<<","<<j<<","<<k<<":"<<dp[i][j]<<endl;
39                     }
40                 }
41             }
42         }
43         double m=-1;
44         int ans=-1;
45         for(int i=0;i<(1<<N);i++){
46             if (dp[N][i]>m){
47                 m=dp[N][i];
48                 ans=i;
49             }
50         }
51         printf("%d\n",ans+1);
52     }
53     return 0;
54 }
View Code

 

SGU 495

【题意】:

ZOJ 3640

【题意】:

POJ 3744

【题意】:

2014 summer day 6 概率dp,布布扣,bubuko.com

2014 summer day 6 概率dp

标签:style   blog   http   color   os   io   for   2014   

原文地址:http://www.cnblogs.com/little-w/p/3904992.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!