标签:
矩阵的迹
在线性代数中,一个的矩阵的迹(或迹数),是指的主对角线(从左上方至右下方的对角线)上各个元素的总和,一般记作或:
其中代表矩阵的第i行j列上的元素的值[1]。一个矩阵的迹是其特征值的总和(按代数重数计算)。
迹的英文为trace,是来自德文中的Spur这个单字(与英文中的Spoor是同源词),在数学中,通常简写为“Sp”或“tr”。
设有矩阵:
它的迹是:
= 3 + 9 + 4 = 16
给定一个环,迹是一个从系数在环中的矩阵的空间射到环之上的线性算子。也就是说,对于任两个的矩阵、和标量,都有:
[2]更进一步来说,当是一个域时,迹数函数是矩阵的空间上的一个线性泛函。
由于一个矩阵的转置矩阵的主对角线元素和原来矩阵的主对角线元素是一样的,所以任意一个矩阵和其转置矩阵都会有相同的迹[2]:
矩阵乘积的迹数设A是一个矩阵,B是个矩阵,则:
[2]其中是一个矩阵,而是一个矩阵。
上述的性质可以由矩阵乘法的定义证明:
如果都是的方形矩阵,那么它们的乘积和也会是方形矩阵。因此,利用这个结果,可以推导出:计算若干个同样大小的方形矩阵的乘积的迹数时,可以循环改变乘积中方形矩阵相乘的顺序,而最终的结果不变</math>[2]。例如,有三个方形矩阵、和,则:
[3]但是要注意:
[3]更一般地,乘积中的矩阵不一定要是方形矩阵,只要某一个循环改变后的乘积依然存在,那么得到的迹数依然会和原来的迹数相同[2]。
另外,如果、和是同样大小的方阵而且还是对称矩阵的话,那么其乘积的迹数不只在循环置换下不会改变,而且在所有的置换下都不会改变:
http://blog.sciencenet.cn/blog-357889-616860.html
标签:
原文地址:http://www.cnblogs.com/jason-wyf/p/5866423.html