标签:
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 828 Accepted Submission(s): 300
题意:有n个数字依次存放在一个数组中(n<=1e5),每个数字<=1e6,数组中每个子序列可以产生一个整个子序列的最大公约数,有q个询问(q<=1e5),每次询问包括两个数字,l,r询问下标从l,到r的区间内一共有多少个不同的GCD;
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <set>
#define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
#define CT continue
#define SC scanf
const int N=1e5+10;
int n,qur,a[N],tree[N],ans[N],pos[10*N];
struct node{
int l,id;
};
int gcd(int a,int b)
{
if(b==0) return a;
else return gcd(b,a%b);
}
int lowbit(int i)
{
return i&(-i);
}
int add(int pos,int val)
{
while(pos<=n){
tree[pos]+=val;
pos+=lowbit(pos);
}
}
int query(int r)
{
int s=0;
while(r>=1){
s+=tree[r];
r-=lowbit(r);
}
return s;
}
vector<node> q[N],lgcd[N];
void solve()
{
for(int i=1;i<=n;i++){
if(pos[a[i]]!=-1) add(pos[a[i]],-1);
pos[a[i]]=i;
add(i,1);
int val=a[i];
for(int j=i-1;j>=1;j--){
int k=gcd(val,a[j]);
if(pos[k]<j){
if(pos[k]!=-1) add(pos[k],-1);
pos[k]=j;
add(j,1);
}
if(k==1) break;
val=k;
}
for(int j=0;j<q[i].size();j++){
int l=q[i][j].l,id=q[i][j].id;
ans[id]=query(i)-query(l-1);
}
}
}
int main()
{
while(~SC("%d%d",&n,&qur)){
MM(tree,0);
MM(pos,-1);
for(int i=1;i<=n;i++) {
SC("%d",&a[i]);
q[i].clear();
}
for(int i=1;i<=qur;i++) {
int l,r;
SC("%d%d",&l,&r);
q[r].push_back((node){l,i});
}
solve();
for(int i=1;i<=qur;i++) printf("%d\n",ans[i]);
}
return 0;
}
分析:
错因分析:比赛的时候想到了每个数字的gcd并不会很多,,但是想到的解决方法是,先统计出从1到i(1<=i<=n)的各个位置所拥有的gcd种类数,,然后对于一个区间[l,r],用种类数r-种类数l-1,,,,但是这样有个很显然的错误就是[l,l-1]内出现的gcd有可能在[l,r]内再次出现,所以这样肯定就错了
纠正与解答:对于这样的问题,
1.我们可以从1-n依次固定右端点,然后从i向前扫,得到一个gcd,然后用BIT维护其gcd最靠右位置,在BIT中+1(可以想象,固定右端点后,越靠右,则不管怎样的区间,都尽可能包含)
2.最多在loga时间内gcd衰减至1.复杂度nlogn*logn;
hdu 5869 Different GCD Subarray Query BIT+GCD 2016ICPC 大连网络赛
标签:
原文地址:http://www.cnblogs.com/smilesundream/p/5869893.html