码迷,mamicode.com
首页 > 其他好文 > 详细

hdu3507_斜率dp

时间:2016-09-14 12:25:29      阅读:217      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507

Print Article

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 9699    Accepted Submission(s): 3066


Problem Description
Zero has an old printer that doesn‘t work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
技术分享

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
 

 

Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
 

 

Output
A single number, meaning the mininum cost to print the article.
 

 

Sample Input
5 5 5 9 5 7 5
 

 

Sample Output
230

推荐博客:http://blog.csdn.net/azheng51714/article/details/8214165

 

技术分享
 1 //dp[i]=dp[j]+M+(sum[i]-sum[j])^2
 2 //设k<j<i, j比k决策好
 3 //dp[j]+M+(sum[i]-sum[j])^2<dp[k]+M+(sum[i]-sum[k])^2
 4 //(dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2*(num[j]-num[k]))<sum[i]
 5 //dp[j]+num[j]^2-(dp[k]+num[k]^2))  GetUp()
 6 //2*(num[j]-num[k])  GetDown()
 7 #include <algorithm>
 8 #include <iostream>
 9 #include <cstring>
10 #include <cstdlib>
11 #include <cstdio>
12 #include <vector>
13 #include <ctime>
14 #include <queue>
15 #include <list>
16 #include <set>
17 #include <map>
18 using namespace std;
19 #define INF 0x3f3f3f3f
20 typedef long long LL;
21 
22 int dp[500010], n, m, sum[500010], q[500010];
23 int GetDp(int i, int j)
24 {
25     return dp[j] + m + (sum[i]-sum[j])*(sum[i]-sum[j]);
26 }
27 int GetUp(int j, int k)//yj-yk的部分
28 {
29     return dp[j] + sum[j]*sum[j] - (dp[k]+sum[k]*sum[k]);
30 }
31 int GetDown(int j, int k)//xj-xk的部分
32 {
33     return 2 * (sum[j] - sum[k]);
34 }
35 int main()
36 {
37     while(~scanf("%d %d", &n, &m))
38     {
39         sum[0] = dp[0] = 0;
40         for(int i = 1; i <= n; i++){
41             scanf("%d", &sum[i]);
42             sum[i] += sum[i-1];
43         }
44         int head = 0, tail = 0;
45         q[tail++] = 0;
46         for(int i = 1; i <=n; i++)
47         {
48             while(head+1<tail && GetUp(q[head+1],q[head])<=sum[i]*GetDown(q[head+1],q[head]))
49                 head++;
50             dp[i] = GetDp(i, q[head]);
51             while(head+1<tail && GetUp(i, q[tail-1])*GetDown(q[tail-1],q[tail-2])<=GetUp(q[tail-1],q[tail-2])*GetDown(i,q[tail-1]))
52                 tail--;
53             q[tail++] = i;
54         }
55         printf("%d\n", dp[n]);
56     }
57     return 0;
58 }
View Code

 

hdu3507_斜率dp

标签:

原文地址:http://www.cnblogs.com/luomi/p/5867993.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!