标签:
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5876
题意:有一个含有n个点的无向图,已知图的补图含有m条边u, v;求在原图中,起点s到其他n-1个点的最短距离,默认边的距离为1;
由于点的个数较大,不能建原图,只能从补图入手;从起点s开始,与s不直接相连的点的最短距离是1,然后再从这些点开始搜,循环即可,用队列表示,队列空了就结束了;
#include<stdio.h> #include<string.h> #include<algorithm> #include<iostream> #include<vector> #include<queue> #include<set> using namespace std; #define met(a, b) memset(a, b, sizeof(a)) #define N 400005 #define INF 0x3f3f3f3f typedef long long LL; vector<vector<int> >G; int dist[N]; void bfs(int s, int n) { set<int> s1, s2; for(int i=1; i<=n; i++) { if(i!=s) s1.insert(i); dist[i] = INF; } queue<int>Q; Q.push(s); dist[s] = 0; while(Q.size()) { int p = Q.front();Q.pop(); for(int i=0,len=G[p].size(); i<len; i++) { int q = G[p][i]; if(s1.find(q) == s1.end())continue;///判断q点是否已经确定距离了; s1.erase(q); s2.insert(q); } set<int>::iterator it; for(it=s1.begin(); it!=s1.end(); it++)///那些到达不了的点都是可以由p点到达的; { dist[*it] = dist[p] + 1; Q.push(*it); } s1.swap(s2);///交换s2和s1; s2.clear(); } } int main() { int T; scanf("%d", &T); while(T--) { int n, m, start; scanf("%d %d", &n, &m); G.clear(); G.resize(n+3); for(int i=1; i<=m; i++) { int u, v; scanf("%d %d", &u, &v); G[u].push_back(v); G[v].push_back(u); } scanf("%d", &start); bfs(start, n); int f = 0; for(int i=1; i<=n; i++) { if(i == start) continue; f++; if(dist[i] == INF) dist[i] = -1; printf("%d%c", dist[i], f == n-1?‘\n‘:‘ ‘); } } return 0; }
Sparse Graph---hdu5876(set+bfs)
标签:
原文地址:http://www.cnblogs.com/zhengguiping--9876/p/5875213.html