标签:
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877
题意:在一棵树上,每个节点有一个数值,问有多少对节点满足条件。
对于一对节点(u, v), 若满足 u 为 v的祖先节点且u,v节点上的数值乘积小于 k。
思路:
dfs遍历树,对于每个节点 i 查询其祖先节点中,有多少个节点的值小于等于 k / ai(ai为当前节点的数值)。
dfs过程中,动态把祖先节点插入treap树中,退栈时删除。
1 #include <iostream> 2 #include <stdio.h> 3 #include <cstring> 4 #include <queue> 5 #include <set> 6 #include <cmath> 7 #include <time.h> 8 #include <cstdlib> 9 #include <algorithm> 10 #define lson (i<<1) 11 #define rson (lson|1) 12 using namespace std; 13 14 typedef long long LL; 15 const int N = 100007; 16 const int INF = 0x7fffffff; 17 18 struct Node 19 { 20 int pri, size, ex, ch[2], p; 21 LL val; 22 void init() 23 { 24 p = 0; 25 ch[0] = ch[1] = 0; 26 pri = ran(); 27 val = 0; 28 ex = 0; 29 size = 0; 30 } 31 inline int ran() 32 { 33 int seed = 777; 34 return (int)(seed * 48271LL % INF); 35 } 36 }tr[N * 20]; 37 38 struct Edge 39 { 40 int to, next; 41 }eg[N]; 42 43 int n, nodeval[N], head[N], in[N], root, sum, root_treap, pos; //pos存放节点的位置 44 LL k, ans; 45 46 void addEdge(int u, int v, int i) 47 { 48 eg[i].to = v; 49 eg[i].next = head[u]; 50 head[u] = i; 51 } 52 53 void rot(int i, int ro) //ro : 0left 1right 54 { 55 int son = tr[i].ch[!ro]; 56 tr[i].ch[!ro] = tr[son].ch[ro]; 57 tr[tr[son].ch[ro]].p = i; 58 tr[son].p = tr[i].p; 59 if (tr[son].p == 0) 60 root_treap = son; 61 if (root_treap != son) 62 { 63 if (tr[tr[i].p].ch[0] == i) 64 tr[tr[i].p].ch[0] = son; 65 else 66 tr[tr[i].p].ch[1] = son; 67 } 68 tr[son].ch[ro] = i; 69 tr[i].p = son; 70 } 71 72 void upadjust(int i) 73 { 74 while (tr[tr[i].p].pri > tr[i].pri && tr[i].p != 0) 75 { 76 if (tr[tr[i].p].ch[0] == i) 77 rot(tr[i].p, 1); 78 else 79 rot(tr[i].p, 0); 80 } 81 } 82 83 void insert(LL val, int pre, int dir, int i) 84 { 85 if (!tr[i].ex) 86 { 87 tr[i].init(); 88 tr[i].val = val; 89 tr[i].size++; 90 tr[i].ex = 1; 91 if (pre != 0) 92 { 93 tr[pre].ch[dir] = i; 94 tr[i].p = pre; 95 } 96 if (tr[i].p == 0) 97 root_treap = i; 98 else if (tr[i].pri < tr[tr[i].p].pri) 99 upadjust(i); 100 return; 101 } 102 else if (val <= tr[i].val) 103 { 104 tr[i].size++; 105 if (tr[i].ch[0]) 106 insert(val, i, 0, tr[i].ch[0]); 107 else 108 insert(val, i, 0, pos++); //节点按照插入treap树的顺序存储,模拟链表。 109 } 110 else 111 { 112 tr[i].size++; 113 if (tr[i].ch[1]) 114 insert(val, i, 1, tr[i].ch[1]); 115 else 116 insert(val, i, 1, pos++); // 117 } 118 } 119 120 void del(LL val, int flag, int i) 121 { 122 if (tr[i].val == val) 123 { 124 if (!tr[i].ch[0] && !tr[i].ch[1]) 125 { 126 int dir = 0; 127 if (tr[tr[i].p].ch[1] == i) 128 dir = 1; 129 tr[tr[i].p].ch[dir] = 0; 130 tr[i].p = 0; 131 tr[i].ex = 0; 132 tr[i].size--; 133 } 134 else if (tr[i].ch[0] && tr[i].ch[1]) 135 { 136 while (tr[i].ch[0] && tr[i].ch[1]) 137 { 138 if (tr[tr[i].ch[0]].pri > tr[tr[i].ch[1]].pri) 139 rot(i, 0); 140 else 141 rot(i, 1); 142 } 143 del(val, 1, root_treap); // 144 } 145 else 146 { 147 int child = 0; 148 if (tr[i].ch[1]) 149 child = 1; 150 if (tr[tr[i].p].ch[0] == i) 151 { 152 tr[tr[i].p].ch[0] = tr[i].ch[child]; 153 tr[tr[i].ch[child]].p = tr[i].p; 154 if (tr[tr[i].ch[child]].p == 0) 155 root_treap = tr[i].ch[child]; 156 } 157 else 158 { 159 tr[tr[i].p].ch[1] = tr[i].ch[child]; 160 tr[tr[i].ch[child]].p = tr[i].p; 161 if (tr[tr[i].ch[child]].p == 0) 162 root_treap = tr[i].ch[child]; 163 } 164 tr[i].ex = 0; 165 tr[i].size--; 166 } 167 } 168 else if (tr[i].val < val) 169 { 170 if (flag == 0) 171 tr[i].size--; 172 del(val, flag, tr[i].ch[1]); 173 } 174 else 175 { 176 if (flag == 0) 177 tr[i].size--; 178 del(val, flag, tr[i].ch[0]); 179 } 180 } 181 182 void query(LL val, int i) 183 { 184 if (tr[i].ex == 0) 185 return; 186 if (val == tr[i].val) 187 { 188 sum += (tr[tr[i].ch[0]].size + 1); 189 return; 190 } 191 else if (val > tr[i].val) 192 { 193 sum += (tr[tr[i].ch[0]].size + 1); 194 query(val, tr[i].ch[1]); 195 } 196 else 197 { 198 query(val, tr[i].ch[0]); 199 } 200 } 201 202 void dfs(int u) 203 { 204 LL val = nodeval[u]; 205 sum = 0; 206 if (u != root) 207 query((k / val), root_treap); 208 ans += sum; 209 insert(val, 0, 0, root_treap); 210 for (int i = head[u]; i != -1; i = eg[i].next) 211 { 212 int v = eg[i].to; 213 dfs(v); 214 } 215 del(val, 0, root_treap); 216 } 217 218 int main() 219 { 220 //freopen("in.ads", "r", stdin); 221 ios_base::sync_with_stdio(0); cin.tie(0); 222 int t; 223 while (cin >> t) 224 { 225 while (t--) 226 { 227 pos = 1; 228 ans = 0; 229 memset(in, 0, sizeof(in)); 230 memset(head, -1, sizeof(head)); 231 cin >> n >> k; 232 for (int i = 1; i <= n; i++) 233 cin >> nodeval[i]; 234 for (int i = 0; i < n - 1; i++) 235 { 236 int u, v; 237 cin >> u >> v; 238 addEdge(u, v, i); 239 in[v]++; 240 } 241 for (int i = 1; i <= n; i++) 242 { 243 if (!in[i]) 244 { 245 root = i; 246 break; 247 } 248 } 249 root_treap = 1; 250 dfs(root); 251 printf("%lld\n", ans); 252 } 253 } 254 return 0; 255 }
hdu 5877 Weak Pair(Treap平衡树 + dfs)
标签:
原文地址:http://www.cnblogs.com/burning-flame/p/5876979.html