码迷,mamicode.com
首页 > 其他好文 > 详细

传统数据挖掘技术小结

时间:2016-09-17 13:21:20      阅读:131      评论:0      收藏:0      [点我收藏+]

标签:

         数据分析或者挖掘到底在做什么?认为分析是为了定性地、概括地从庞大的数据中找到规律,找到数据挖掘的方向。就像解数学题之前要对题目进行定性,简单的推演以找到解决数学问题的思路。

 

         数据挖掘是从庞大的信息源中获得知识1的过程。数据挖掘是为了得到目标结果而使用的方法,手段。有一些比较成熟的数据挖掘算法。如,决策树算法2,神经网络算法2,支持向量机3,线性回归等。其中决策树算法时间复杂度最低,应该是最常用的挖掘算法。

 

         知识的挖掘离不开信息源。未经处理的信息往往带有很大的噪声。因此必须要对原始信息进行处理。这也就是所谓的数据清洗,属于数据预处理模块。

         经过处理后的数据更加干净,准确,简化。可以更好地为挖掘使用。从而减少了数据挖掘算法模块的数据处理量,提高了挖掘的效率和知识发现的起点,准确度。

 

         经过数据预处理模块之后便可以进入到挖掘算法模块了。再经过某种方法将数据处理之后便可以得到一定的模式或规则。但是这时得到的模式并不是最终的知识,因为模式有可能是冗余的、无效的,甚至是错误的。这就需要做进一步处理。

 

得到无误的模式之后,还需要对模式解释表达,使用户能够理解,进而能够做出评估判断。这就是信息展示要做的工作。此时要借助一些可视化技术和传统的知识表达技术,这样可以更加形象,直观地表出挖掘的结果。

总而言之,数据挖掘得到知识的过程是:

1、  得到预处理的数据;

2、  数据挖掘算法(分类处理数据)得到模式或者规则;

3、  模式形象地展示出来。

传统数据挖掘技术小结

标签:

原文地址:http://www.cnblogs.com/wuyiblogs/p/5878301.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!