码迷,mamicode.com
首页 > 其他好文 > 详细

计算n的阶乘(n!)末尾0的个数

时间:2016-09-18 23:30:46      阅读:154      评论:0      收藏:0      [点我收藏+]

标签:

题目:

给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数。

举例:

  • 5!=120,其末尾所含有的“0”的个数为1;
  • 10!= 3628800,其末尾所含有的“0”的个数为2;
  • 20!= 2432902008176640000,其末尾所含有的“0”的个数为4

解题思路:

两个大数字相乘,都可以拆分成多个质数相乘,而质数相乘结果尾数为0的,只可能是2*5。如果想到了这一点,那么就可以进一步想到:两个数相乘尾数0的个数其实就是依赖于2和5因子的个数。又因为每两个连续数字就会有一个因子2,个数非常充足,所以此时只需要关心5因子的个数就行了。

  对于一个正整数n来说,怎么计算n!中5因子的个数呢?我们可以把5的倍数都挑出来,即:

  令n! = (5*K) * (5*(K-1)) * (5*(K-2)) * ... * 5 * A,其中A就是不含5因子的数相乘结果,n = 5*K + r(0<= r <= 4)。假设f(n!)是计算阶乘n!尾数0的个数,而g(n!)是计算n!中5因子的个数,那么就会有如下公式:

  f(n!) = g(n!) = g(5^K * K! * A) = K + g(K!) = K + f(K!),其中K=n / 5(取整数)。

代码如下:

1  public static int calN(int n){
2         if(n < 5){
3             return 0;
4         }
5         else{
6             return n / 5 + calN(n / 5);
7         }
8     }

 

计算n的阶乘(n!)末尾0的个数

标签:

原文地址:http://www.cnblogs.com/leavescy/p/5883216.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!