标签:
设gcd(a,b)为a和b的最大公约数,xor(a,b)为a异或b的结果。
kkk总是把gcd写成xor。今天数学考试恰好出到了gcd(a,b)=?这样的题目,但是kkk全部理解成了xor(a,b)=?
幸好这是填空题,老师只看kkk的答案是否正确而不在意过程。于是kkk想知道,对于所有不超过N的正整数a和b(a>=b)有多少组(a,b)满足可以使kkk的答案是正确的?
输入格式:
一个整数N
输出格式:
输出(a,b)的组数
7
4
1<=N<=100000
分析:直接n2必然超时;
由a-b<=xor(a,b)=gcd(a,b)即可枚举最大公因子;
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <map> #include <queue> #include <stack> #include <vector> #include <list> #define rep(i,m,n) for(i=m;i<=n;i++) #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++) #define mod 1000000007 #define inf 0x3f3f3f3f #define vi vector<int> #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) #define pii pair<int,int> #define Lson L, mid, rt<<1 #define Rson mid+1, R, rt<<1|1 const int maxn=5e2+10; using namespace std; ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} inline ll read() { ll x=0;int f=1;char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } int n,m,k,t; ll ans; int main() { int i,j; scanf("%d",&n); for(i=1;i<=n/2;i++) { for(j=2*i;j<=n;j+=i) if(i==(j^(j-i)))ans++; } printf("%lld\n",ans); //system("Pause"); return 0; }
标签:
原文地址:http://www.cnblogs.com/dyzll/p/5894464.html