码迷,mamicode.com
首页 > 其他好文 > 详细

NumPy 学习(1): ndarrays

时间:2016-09-22 11:26:39      阅读:165      评论:0      收藏:0      [点我收藏+]

标签:

  Numpy 是Numerical Python的简写,用来进行高性能的科学计算以及数据分析的基础包。它是一些高级工具(pandas)的基础。它主要提供以下几个功能:

  (1). ndarray:计算快,空间效率高的多纬的数组

  (2). 快速操作数组的标准数学函数

  (3). 向磁盘读写数据的工具,提供内存影射文件功能

  (3). 线性代数,随机数生成器,傅立叶变换功能

  (4). 整合用C,C++,以及Fortran写的代码的工具 (Python生态系统宗重要的功能)

   事实上Numpy本身没有提供太多数据分析的函数,但是理解NumPy的数组,以及面向数组的计算对后期学习pandas等工具有很大的帮助。

1. ndarray , 多维数组对象

  多维数组对象是NumPy的一个重要特点,它为庞大的数据集提供一个运算快且灵活的容器。

  (1). 简单创建一个数组,通过调用pandas.array(),前提是需要引入numpy包,这里我门为了方便调用,将其重命名为np

In [6]: import numpy as np

In [7]: a = [6,7.5,8,0,1]
# 用创建的list对象来创建array对象
In [8]: arr1 = np.array(a)

In [9]: arr1
Out[9]: array([ 6. ,  7.5,  8. ,  0. ,  1. ])

  (2). 用嵌套序列来创建数组

n [12]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [13]: arr2 = np.array(data2)

In [14]: arr2
Out[14]: 
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])

  (3). 除了用np.array 来创建数组外,还有一些其他的函数来创建新的数组。

    zeros 和 ones 函数可以分别用来创建0,和1 元素的数组。 

In [15]: np.zeros(10)
Out[15]: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
In [16]: np.ones((3,5))
Out[16]:
array([[ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.]])

     通过np.empty 创建一个由任意数初始化的数组

In [21]: np.empty((2,3,2))
Out[21]: 
array([[[  6.91210571e-310,   1.97791711e-316],
        [  0.00000000e+000,   0.00000000e+000],
        [  0.00000000e+000,   0.00000000e+000]],

       [[  0.00000000e+000,   0.00000000e+000],
        [  0.00000000e+000,   0.00000000e+000],
        [  0.00000000e+000,   0.00000000e+000]]])

    通过arrange函数创建:

    

In [28]: np.arange(10)
Out[28]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

 

  (4). 查看数组属性

# 查看数组维度
In [24]: arr2.ndim Out[24]: 2 # 查看数组大尺寸 In [25]: arr2.shape Out[25]: (2, 4) # 查看数组元素类型 In [26]: arr2.dtype Out[26]: dtype(int64)
。。。。。

 

2. ndarrays 的数据类型:

   在创建数组的时候可以指定数据元素的类型,用dtype指定类型,说明在解析数组所在内存空间的时候采用什么方式。这使得NumPy 更加强大和易用。

 在大多数情况下,NumPy是直接类型映射成底层的二进制,这使得其更容易以二进制流的方式去读写数据。

    

In [3]: arr1 = np.array([1,2,3,4],dtype = np.float64)

In [4]: arr2 = np.array([4,3,2,1],dtype = np.int32)

In [5]: arr1.dtype
Out[5]: dtype(float64)

In [6]: arr2.dtype
Out[6]: dtype(int32)

  数据类型表:

  技术分享

  技术分享

  可以显示的将一种类型强转为另一种类型,这时需要使用astye函数

In [7]: arr2.dtype
Out[7]: dtype(int32)
In [8]: float_arr2 = arr2.astype(np.float64)
In [9]: float_arr2
Out[9]: array([ 4.,  3.,  2.,  1.])
In [10]: float_arr2.dtype
Out[10]: dtype(float64)

  但是当把浮点类型转化为整形的时候会出现截断:

  

In [11]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])

In [12]: arr.astype(np.int32)
Out[12]: array([ 3, -1, -2,  0, 12, 10], dtype=int32)

  也可以把字符串表示的数字转换为数值类型,但是可能在转换过程中出错,因为有的字符串无法转换为数值类型。

In [13]: numeric_strings = np.array([1.25, -9.6, 42], dtype=np.string_)

In [14]: numeric_strings.astype(float)
Out[14]: array([  1.25,  -9.6 ,  42.  ])


3. 运算

  可以在NumPy的数组之间,以及数组和数字之间作运算。

In [15]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])

In [16]: arr
Out[16]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])
# 数组间乘法
In [17]: arr * arr
Out[17]: 
array([[  1.,   4.,   9.],
       [ 16.,  25.,  36.]])
# 数组间减法
In [18]: arr - arr
Out[18]: 
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])
# 数和数组的除法
In [19]: 1 / arr
Out[19]: 
array([[ 1.        ,  0.5       ,  0.33333333],
       [ 0.25      ,  0.2       ,  0.16666667]])
# 数和数组的乘法
In [20]: arr * 0.5
Out[20]: 
array([[ 0.5,  1. ,  1.5],
       [ 2. ,  2.5,  3. ]])

  不同尺寸大小的数组间也是可以运算的。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

NumPy 学习(1): ndarrays

标签:

原文地址:http://www.cnblogs.com/linux-wangkun/p/5894290.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!