标签:
链接:http://vjudge.net/problem/UVA-658
分析:Dijkstra求隐式图最短路。
1 #include <cstdio> 2 #include <queue> 3 using namespace std; 4 5 const int maxn = 20; 6 const int maxm = 100 + 5; 7 const int INF = 1000000000; 8 9 int n, m, t[maxm], vis[1 << maxn], dist[1 << maxn]; 10 char before[maxm][maxn + 5], after[maxm][maxn + 5]; 11 12 struct Node { 13 int bugs, dist; 14 bool operator < (const Node& rhs) const { 15 return dist > rhs.dist; 16 } 17 }; 18 19 int solve() { 20 priority_queue<Node> q; 21 for (int i = 0; i < (1 << n); i++) { vis[i] = 0; dist[i] = INF; } 22 Node start; 23 start.dist = 0; 24 start.bugs = (1 << n) - 1; 25 dist[start.bugs] = 0; 26 q.push(start); 27 while (!q.empty()) { 28 Node u = q.top(); q.pop(); 29 if (u.bugs == 0) return u.dist; 30 if (vis[u.bugs]) continue; 31 vis[u.bugs] = 1; 32 for (int i = 0; i < m; i++) { 33 bool patchable = true; 34 for (int j = 0; j < n; j++) { 35 if (before[i][j] == ‘-‘ && (u.bugs >> j & 1)) {patchable = false; break; } 36 if (before[i][j] == ‘+‘ && !(u.bugs >> j & 1)) { patchable = false; break; } 37 } 38 if (!patchable) continue; 39 Node u2; 40 u2.dist = u.dist + t[i]; 41 u2.bugs = u.bugs; 42 for (int j = 0; j < n; j++) { 43 if (after[i][j] == ‘-‘) { u2.bugs &= ~(1 << j); } 44 if (after[i][j] == ‘+‘) { u2.bugs |= (1 << j); } 45 } 46 int& D = dist[u2.bugs]; 47 if (u2.dist < D) { 48 D = u2.dist; 49 q.push(u2); 50 } 51 } 52 } 53 return -1; 54 } 55 56 int main() { 57 int kase = 0; 58 while (scanf("%d%d", &n, &m) == 2 && n) { 59 for (int i = 0; i < m; i++) scanf("%d%s%s", &t[i], before[i], after[i]); 60 int ans = solve(); 61 printf("Product %d\n", ++kase); 62 if (ans < 0) printf("Bugs cannot be fixed.\n\n"); 63 else printf("Fastest sequence takes %d seconds.\n\n", ans); 64 } 65 return 0; 66 }
UVa658 It's not a Bug, it's a Feature! (最短路,隐式图搜索)
标签:
原文地址:http://www.cnblogs.com/XieWeida/p/5903762.html