码迷,mamicode.com
首页 > 其他好文 > 详细

pandas 学习(2): pandas 数据结构之DataFrame

时间:2016-09-24 20:20:02      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:

  DataFrame 类型类似于数据库表结构的数据结构,其含有行索引和列索引,可以将DataFrame 想成是由相同索引的Series组成的Dict类型。在其底层是通过二维以及一维的数据块实现。

1.  DataFrame 对象的构建

  1.1 用包含等长的列表或者是NumPy数组的字典创建DataFrame对象

In [68]: import pandas as pd

In [69]: from pandas import Series,DataFrame

# 建立包含等长列表的字典类型 In [
70]: data = {state: [Ohio, Ohio, Ohio, Nevada, Nevada],year: [2000, 2001, 20 ...: 02, 2001, 2002],pop: [1.5, 1.7, 3.6, 2.4, 2.9]} In [71]: data Out[71]: {pop: [1.5, 1.7, 3.6, 2.4, 2.9], state: [Ohio, Ohio, Ohio, Nevada, Nevada], year: [2000, 2001, 2002, 2001, 2002]} # 建立DataFrame对象 In [72]: frame1 = DataFrame(data) # 红色部分为自动生成的索引 In [73]: frame1 Out[73]: pop state year 0 1.5 Ohio 2000 1 1.7 Ohio 2001 2 3.6 Ohio 2002 3 2.4 Nevada 2001 4 2.9 Nevada 2002

  在建立过程中可以指点列的顺序:

In [74]: frame1 = DataFrame(data,columns=[year, state, pop])

In [75]: frame1
Out[75]: 
   year   state  pop
0  2000    Ohio  1.5
1  2001    Ohio  1.7
2  2002    Ohio  3.6
3  2001  Nevada  2.4
4  2002  Nevada  2.9

  和Series一样,DataFrame也是可以指定索引内容:

In [76]: ind = [one, two, three, four, five]
In [77]: frame1 = DataFrame(data,index = ind)

In [78]: frame1
Out[78]: 
       pop   state  year
one    1.5    Ohio  2000
two    1.7    Ohio  2001
three  3.6    Ohio  2002
four   2.4  Nevada  2001
five   2.9  Nevada  2002

  1.2.  用由字典类型组成的嵌套字典类型来生成DataFrame对象

  当由嵌套的字典类型生成DataFrame的时候,外部的字典索引会成为列名,内部的字典索引会成为行名。生成的DataFrame会根据行索引排序

In [84]: pop = {Nevada: {2001: 2.4, 2002: 2.9},Ohio: {2000: 1.5, 2001: 1.7, 2002: 3.6}}

In [85]: frame3 = DataFrame(pop)

In [86]: frame3
Out[86]: 
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7
2002     2.9   3.6

  除了使用默认的按照行索引排序之外,还可以指定行序列:

In [95]: frame3 = DataFrame(pop,[2002,2001,2000])

In [96]: frame3
Out[96]: 
      Nevada  Ohio
2002     2.9   3.6
2001     2.4   1.7
2000     NaN   1.5

  1.3 其它构造方法:

  技术分享

2.  DataFrame 内容访问

  从DataFrame中获取一列的结果为一个Series,可以通过以下两种方式获取:

# 以字典索引方式获取
In [100]: frame1["state"] Out[100]: one Ohio two Ohio three Ohio four Nevada five Nevada Name: state, dtype: object # 以属性方式获取 In [101]: frame1.state Out[101]: one Ohio two Ohio three Ohio four Nevada five Nevada Name: state, dtype: object

  也可以通过ix获取一行数据:

In [109]: frame1.ix["one"] # 或者是 frame1.ix[0]
Out[109]: 
pop       1.5
state    Ohio
year     2000
Name: one, dtype: object
# 获取多行数据
In [110]: frame1.ix[["tow","three","four"]]
Out[110]:
       pop   state    year
tow    NaN     NaN     NaN
three  3.6    Ohio  2002.0
four   2.4  Nevada  2001.0
# 还可以通过默认数字行索引来获取数据
In [111]: frame1.ix[range(3)]
Out[111]:
       pop state  year
one    1.5  Ohio  2000
two    1.7  Ohio  2001
three  3.6  Ohio  2002

  获取指定行,指定列的交汇值:

In [119]: frame1["state"]
Out[119]: 
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
Name: state, dtype: object

In [120]: frame1["state"][0]
Out[120]: Ohio

In [121]: frame1["state"]["one"]
Out[121]: Ohio

  先指定列再指定行:

In [125]: frame1.ix[0]
Out[125]: 
pop       1.5
state    Ohio
year     2000
Name: one, dtype: object

In [126]: frame1.ix[0]["state"]
Out[126]: Ohio

In [127]: frame1.ix["one"]["state"]
Out[127]: Ohio

In [128]: frame1.ix["one"][0]
Out[128]: 1.5

In [129]: frame1.ix[0][0]
Out[129]: 1.5

 

3. DataFrame 对象的修改

  增加一列,并所有赋值为同一个值:

# 增加一列值
In [131]: frame1["debt"] = 10 In [132]: frame1 Out[132]: pop state year debt one 1.5 Ohio 2000 10 two 1.7 Ohio 2001 10 three 3.6 Ohio 2002 10 four 2.4 Nevada 2001 10 five 2.9 Nevada 2002 10
# 更改一列的值 In [
133]: frame1["debt"] = np.arange(5) In [134]: frame1 Out[134]: pop state year debt one 1.5 Ohio 2000 0 two 1.7 Ohio 2001 1 three 3.6 Ohio 2002 2 four 2.4 Nevada 2001 3 five 2.9 Nevada 2002 4

  追加类型为Series的一列

# 判断是否为东部区
In [137]: east = (frame1.state == "Ohio") In [138]: east Out[138]: one True two True three True four False five False Name: state, dtype: bool # 赋Series值 In [139]: frame1["east"] = east In [140]: frame1 Out[140]: pop state year debt east one 1.5 Ohio 2000 0 True two 1.7 Ohio 2001 1 True three 3.6 Ohio 2002 2 True four 2.4 Nevada 2001 3 False five 2.9 Nevada 2002 4 False

  DataFrame 的行可以命名,同时多列也可以命名:

In [145]: frame3.columns.name = "state"

In [146]: frame3.index.name = "year"

In [147]: frame3
Out[147]: 
state  Nevada  Ohio
year               
2002      2.9   3.6
2001      2.4   1.7
2000      NaN   1.5

 

pandas 学习(2): pandas 数据结构之DataFrame

标签:

原文地址:http://www.cnblogs.com/linux-wangkun/p/5903945.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!