码迷,mamicode.com
首页 > 其他好文 > 详细

LeetCode - 120. Triangle

时间:2016-09-25 18:43:22      阅读:108      评论:0      收藏:0      [点我收藏+]

标签:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思路:简单DP,把到每一个点的最优路径算出来,利用上面算好的结果。最后选最后一层的最优解。

1,动态规划。到第i层的第k个顶点的最小路径长度表示为f(i,k),则f(i, k) = min{f(i-1,k),  f(i-1,k-1)} + d(i, k); 其中d(i, k)表示原来三角形数组里的第i行第k列的元素。则可以求得从第一行到最终到第length-1行第k个元素的最小路径长度,最后再比较第length-1行中所有元素的路径长度大小,求得最小值。

2,本题主要关心的是空间复杂度不要超过n。

3,注意边界条件——每一行中的第一和最后一个元素在上一行中只有一个邻居。而其他中间的元素在上一行中都有两个相邻元素。

 

代码:

import java.util.*;
public class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        if (triangle == null || triangle.get(0) == null)
            return 0;
        
        int iLen = triangle.size();
        
        for (int i=1; i<iLen; i++) {
            int jLen = triangle.get(i).size();
            for (int j=0; j<jLen; j++) {
                if (j == 0) {
                    triangle.get(i).set(0, triangle.get(i).get(0) + triangle.get(i-1).get(0));
                }
                else if (j == jLen - 1) {
                    triangle.get(i).set(j, triangle.get(i).get(j) + triangle.get(i-1).get(j-1));
                }
                else {
                    triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i-1).get(j-1), triangle.get(i-1).get(j)));
                }
            }
        }
        
        return Collections.min(triangle.get(iLen-1));
    }
}

 




LeetCode - 120. Triangle

标签:

原文地址:http://www.cnblogs.com/wxisme/p/5906352.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!