标签:
一,问题描述
给定一颗二叉树,已知其根结点。
①计算二叉树所有结点的个数
②计算二叉树中叶子结点的个数
③计算二叉树中满节点(度为2)的个数
二,算法分析
找出各个问题的基准条件,然后采用递归的方式实现。
①计算二叉树所有结点的个数
1)当树为空时,结点个数为0,否则为根节点个数 加上 根的左子树中节点个数 再加上 根的右子树中节点的个数
借助遍历二叉树的思路,每访问一个结点,计数增1。因此,可使用类似于先序遍历的思路来实现,代码如下:
//计算树中节点个数 private int nubmerOfNodes(BinaryNode<T> root){ int nodes = 0; if(root == null) return 0; else{ nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right); } return nodes; }
计算树中节点个数的代码方法与计算树的高度的代码非常相似!
//求二叉树的深度 public static int deep(Node node){ int h1, h2; if(node == null) {return 0; } else{ h1= deep(node.left); h2= deep(node.right); return (h1<h2)?h2+1:h1+1; } }
②计算叶子结点的个数
1)当树为空时,叶子结点个数为0
2)当某个节点的左右子树均为空时,表明该结点为叶子结点,返回1
3)当某个节点有左子树,或者有右子树时,或者既有左子树又有右子树时,说明该节点不是叶子结点,因此叶结点个数等于左子树中叶子结点个数 加上 右子树中叶子结点的个数
//计算树中叶结点的个数 private int numberOfLeafs(BinaryNode<T> root){ int nodes = 0; if(root == null) return 0; else if(root.left == null && root.right == null) return 1; else nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right); return nodes; }
③计算满节点的个数(对于二叉树而言,满节点是度为2的节点)
满节点的基准情况有点复杂:
1)当树为空时,满节点个数为0
2)当树中只有一个节点时,满节点个数为0
3)当某节点只有左子树时,需要进一步判断左子树中是否存在满节点
4)当某节点只有右子树时,需要进一步判断右子树中是否存在满节点
5)当某节点即有左子树,又有右子树时,说明它是满结点。但是由于它的左子树或者右子树中可能还存在满结点,因此满结点个数等于该节点加上该节点的左子树中满结点的个数 再加上 右子树中满结点的个数。
//计算树中度为2的节点的个数--满节点的个数 private int numberOfFulls(BinaryNode<T> root){ int nodes = 0; if(root == null) return 0; else if(root.left == null && root.right == null) return 0; else if(root.left == null && root.right != null) nodes = numberOfFulls(root.right); else if(root.left != null && root.right == null) nodes = numberOfFulls(root.left); else nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right); return nodes; }
对于二叉树而言,有一个公式:度为2的结点个数等于度为0的结点个数减去1。 即:n(2)=n(0)-1
故可以这样:
private int numberOfFulls(BinaryNode<T> root){ return numberOfLeafs(root) > 0 ? numberOfLeafs(root)-1 : 0;// n(2)=n(0)-1 }
三,完整程序代码如下
public class BinarySearchTree<T extends Comparable<? super T>> { private static class BinaryNode<T> { T element; BinaryNode<T> left; BinaryNode<T> right; public BinaryNode(T element) { this(element, null, null); } public BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right) { this.element = element; this.left = left; this.right = right; } public String toString() { return element.toString(); } } private BinaryNode<T> root; public BinarySearchTree() { root = null; } public void insert(T ele) { root = insert(ele, root);// 每次插入操作都会‘更新‘根节点. } private BinaryNode<T> insert(T ele, BinaryNode<T> root) { if (root == null) return new BinaryNode<T>(ele); int compareResult = ele.compareTo(root.element); if (compareResult > 0) root.right = insert(ele, root.right); else if (compareResult < 0) root.left = insert(ele, root.left); else ; return root; } public int height() { return height(root); } private int height(BinaryNode<T> root) { if (root == null) return -1;// 叶子节点的高度为0,空树的高度为1 return 1 + (int) Math.max(height(root.left), height(root.right)); } public int numberOfNodes(BinarySearchTree<T> tree){ return nubmerOfNodes(tree.root); } //计算树中节点个数 private int nubmerOfNodes(BinaryNode<T> root){ int nodes = 0; if(root == null) return 0; else{ nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right); } return nodes; } public int numberOfLeafs(BinarySearchTree<T> tree){ return numberOfLeafs(tree.root); } //计算树中叶结点的个数 private int numberOfLeafs(BinaryNode<T> root){ int nodes = 0; if(root == null) return 0; else if(root.left == null && root.right == null) return 1; else nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right); return nodes; } public int numberOfFulls(BinarySearchTree<T> tree){ return numberOfFulls(tree.root); // return numberOfLeafs(tree.root) > 0 ? numberOfLeafs(tree.root)-1 : 0;// n(2)=n(0)-1 } //计算树中度为2的节点的个数--满节点的个数 private int numberOfFulls(BinaryNode<T> root){ int nodes = 0; if(root == null) return 0; else if(root.left == null && root.right == null) return 0; else if(root.left == null && root.right != null) nodes = numberOfFulls(root.right); else if(root.left != null && root.right == null) nodes = numberOfFulls(root.left); else nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right); return nodes; } public static void main(String[] args) { BinarySearchTree<Integer> intTree = new BinarySearchTree<>(); double averHeight = intTree.averageHeigth(1, 6, intTree); System.out.println("averageheight = " + averHeight); /*-----------All Nodes-----------------*/ int totalNodes = intTree.numberOfNodes(intTree); System.out.println("total nodes: " + totalNodes); /*-----------Leaf Nodes-----------------*/ int leafNodes = intTree.numberOfLeafs(intTree); System.out.println("leaf nodes: " + leafNodes); /*-----------Full Nodes-----------------*/ int fullNodes = intTree.numberOfFulls(intTree); System.out.println("full nodes: " + fullNodes); } public double averageHeigth(int tree_numbers, int node_numbers, BinarySearchTree<Integer> tree) { int tree_height, totalHeight = 0; for(int i = 1; i <= tree_numbers; i++){ int[] randomNumbers = C2_2_8.algorithm3(node_numbers); //build tree for(int j = 0; j < node_numbers; j++) { tree.insert(randomNumbers[j]); System.out.print(randomNumbers[j] + " "); } System.out.println(); tree_height = tree.height(); System.out.println("height:" + tree_height); totalHeight += tree_height; // tree.root = null;//for building next tree } return (double)totalHeight / tree_numbers; } }
标签:
原文地址:http://www.cnblogs.com/chengpeng15/p/5910677.html