标签:
YARN是Hadoop2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。
YARN总体上仍然是Master/Slave结构,在这个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManger负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以追踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManager启动可以占用一定资源的任务。由于不同的ApplicationMaste被分布到不同的节点上,因此它们之间不会互相影响。
YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。
RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Application Manager,ASM)。
调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可拔插的组件,用户可以根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler 和Capacity Scheduler等。
应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。
用户提交的每个应用程序均包含一个AM,主要功能包括:
NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接受并处理来自AM的Container启动/停止等各种请求。
Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container在描述的资源。
在应用程序运行过程中,用户可以随时通过RPC向ApplicationMaster查询应用程序的当前运行状态。
标签:
原文地址:http://www.cnblogs.com/zcr3108346262/p/5913594.html