标签:acm
const int MAXN = 1100000; int prime[MAXN], tot; bool check[MAXN]; void init() { FE(i, 2, MAXN) { if (!check[i]) prime[tot++] = i; for (int j = 0; j < tot && i <= MAXN / prime[j]; j++) { check[i * prime[j]] = true; if (i % prime[j] == 0) break; } } } struct Fac { LL val, num; } fac[200]; int cnt; vector<LL> vt; int ok(LL t, LL i) { t /= i; while (t) { if (t % i != 3 && t % i != 4 && t % i != 5 && t % i != 6) break; t /= i; } if (!t) return 1; return 0; } int used; void dfs(int pos, LL val, LL n) { if (pos == cnt) { if (val > used && ok(n, val)) vt.push_back(val); return; } LL t = 1; FE(i, 0, fac[pos].num) { dfs(pos + 1, val * t, n); t *= fac[pos].val; } } int fun(LL n) { vt.clear(); cnt = 0; LL nn = n; for (int i = 0; i < tot && prime[i] <= n / prime[i]; i++) if (n % prime[i] == 0) { fac[cnt].val = prime[i]; fac[cnt].num = 0; while (n % prime[i] == 0) { n /= prime[i]; fac[cnt].num++; } cnt++; } if (n > 1) { fac[cnt].val = n; fac[cnt].num = 1; cnt++; } dfs(0, 1, nn); vt.erase(unique(all(vt)), vt.end()); REP(i, vt.size()) { debugI(vt[i]); } return vt.size(); } int solve(LL n) { int ret = 0; for (used = 3; used <= 6; used++) ret += fun(n - used); return ret; } int main() { init(); int T; RI(T); FE(kase, 1, T) { LL n; cin >> n; if (n < 3) printf("Case #%d: 0\n", kase); else if (n <= 6) printf("Case #%d: -1\n", kase); else printf("Case #%d: %d\n", kase, solve(n)); } return 0; }
标签:acm
原文地址:http://blog.csdn.net/wty__/article/details/38519173