标签:
给出如下定义:
子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与 列的相对顺序)被称为原矩阵的一个子矩阵。
例如,下面左图中选取第 2、4 行和第 2、4、5 列交叉位置的元素得到一个 2*3 的子矩阵如右图所示。
相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。
本题任务:给定一个 n 行 m 列的正整数矩阵,请你从这个矩阵中选出一个 r 行 c 列的 子矩阵,使得这个子矩阵的分值最小,并输出这个分值。
第一行包含用空格隔开的四个整数 n,m,r,c,意义如问题描述中所述,每两个整数之间用一个空格隔开。
接下来的 n 行,每行包含 m 个用空格隔开的整数,用来表示问题描述中那个 n 行 m 列的矩阵。
输出共 1 行,包含 1 个整数,表示满足题目描述的子矩阵的最小分值。
5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
6
16
对于 50%的数据,1 ≤ n ≤ 12, 1 ≤ m ≤ 12, 矩阵中的每个元素 1 ≤ a[i][j] ≤20;
对于 100%的数据,1 ≤ n ≤ 16, 1 ≤ m ≤ 16, 矩阵中的每个元素 1 ≤ a[i][j] ≤1000,1 ≤ r ≤ n, 1 ≤ c ≤ m。
时间限制:每一组测试数据1s。
【输入输出样例 1 说明】
该矩阵中分值最小的 2 行 3 列的子矩阵由原矩阵的第 4 行、第 5 行与第 1 列、第 3 列、 第 4 列交叉位置的元素组成,为
6 5 6
7 5 6
,其分值为 |6 − 5| + |5 − 6| + |7 − 5| + |5 − 6| + |6 − 7| + |5 − 5| + |6 − 6| = 6。
【输入输出样例 2 说明】
该矩阵中分值最小的 3 行 3 列的子矩阵由原矩阵的第 4 行、第 5 行、第 6 行与第 2 列、第 6 列、第 7 列交叉位置的元素组成,选取的分值最小的子矩阵为
9 7 8
9 8 8
5 8 10
题解:
动归+搜索。
感觉就是这些算法(因本人太渣,打不出代码)。
标签:
原文地址:http://www.cnblogs.com/huzhaoyang/p/5924964.html