标签:
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
虽然是hard,但是这题是必会高频题.主要思路为间接的二分.参考这个博客
理思路,假设A为m个,B为n个,如果m+n为奇数, 则直接查找A和B中的第(m+n)/2+1个元素,如果m+n为偶数,则先求第(m+n)/2和第(m+n)/2+1个元素,之后求平均->所以此题转化为Kth element in 2 sorted array.
而对于“Kth element in 2 sorted array”, 如下图,两个中位数 A[m/2] 和 B[n/2], 可以将数组划分为四个部分。而丢弃哪一个部分取决于两个条件:1, (m/2 + n/2)和k的关系;2,A[m/2] 和B[n/2]的关系;
如果 (m/2 + n/2) > k,那么意味着,当前中位数取高了,正确的中位数要么在 Section 1或者Section3中。如果A[m/2] > B[n/2], 意味着中位数肯定不可能在Section 2里面,那么新的搜索可以丢弃这个区间段了。同理可以推断出余下三种情况,如下所示:
class Solution(object): def findMedianSortedArrays(self, nums1, nums2): """ :type nums1: List[int] :type nums2: List[int] :rtype: float """ m = len(nums1) n = len(nums2) if (m+n)&1: return self.findKthSortedArrays(nums1,0, m, nums2, 0, n, (m+n)/2+1) else: return (self.findKthSortedArrays(nums1,0, m, nums2, 0, n, (m+n)/2) + self.findKthSortedArrays(nums1,0, m, nums2, 0, n, (m+n)/2+1))/2.0 def findKthSortedArrays(self, nums1, startA, lenA, nums2, startB, lenB, k): print startA, lenA, startB, lenB, k if lenA<=0: return nums2[startB+k-1] if lenB<=0: return nums1[startA+k-1] if k==1: return min(nums1[startA], nums2[startB]) m1 = startA+lenA/2 m2 = startB+lenB/2 if nums1[m1] >= nums2[m2]: if lenA/2+lenB/2+1 >= k: return self.findKthSortedArrays(nums1, startA, lenA/2, nums2, startB, lenB, k) #delete the latter part of A else: return self.findKthSortedArrays(nums1, startA, lenA, nums2, startB+lenB/2+1, lenB-lenB/2-1, k-lenB/2-1) #delete the start part of B else: if m1 + m2 -startA - startB + 1 >= k: return self.findKthSortedArrays(nums1, startA, lenA, nums2, startB, lenB/2, k) #delete the latter part of B else: return self.findKthSortedArrays(nums1, startA+lenA/2+1, lenA-lenA/2-1, nums2, startB, lenB, k-lenA/2-1) #delete the start part of A
九章的写法,非常简洁但不够直接.
class Solution(object): def findMedianSortedArrays(self, nums1, nums2): """ :type nums1: List[int] :type nums2: List[int] :rtype: float """ m = len(nums1) + len(nums2) if m%2 ==1 : return self.findKth(nums1, nums2, 0, 0, m/2 + 1) #总共奇数个数 else: return (self.findKth(nums1, nums2, 0, 0, m/2) + self.findKth(nums1, nums2, 0, 0, m/2+1))/2.0 #总共偶数个数 def findKth(self, nums1, nums2, A_start, B_start, k): if A_start >= len(nums1): return nums2[B_start+k-1] #如果A数组中已经没有数,则全部在B数组中找,直接返回这个元素 if B_start >= len(nums2): return nums1[A_start+k-1] #如果B数组中已经没有数,则全部在A数组中找,直接返回这个元素 if k == 1: return min(nums1[A_start], nums2[B_start]) A_key = nums1[A_start + k/2-1] if (A_start+k/2-1) < len(nums1) else sys.maxint B_key = nums2[B_start + k/2 -1] if (B_start+k/2-1) < len(nums2) else sys.maxint if A_key < B_key: return self.findKth(nums1, nums2, A_start + k/2, B_start, k-k/2) else: return self.findKth(nums1, nums2, A_start, B_start + k/2, k-k/2)
标签:
原文地址:http://www.cnblogs.com/sherylwang/p/5925983.html